
Karshi Multidisciplinary International Scientific Journal

Vol. 1(2) (2024), 115–148 © Research Expansion Alliance (REA) 2024

NEW ASPECTS OF CERTAIN SPECIAL FUNCTIONS WITH
APPLICATIONS

Mohamed Abdalla

Communicated by Manoj Gupta

Abstract: Throughout the history of natural science, special functions (SFs) have been a
powerful instrument in the solution of a wide variety of important problems in various fields such
as physics, engineering, biology, medicine, economics, and finance. The reduction of any given
applied problem to the evaluation of special functions has always been, and still is, looked on as
indicating a strong penetration into the essence of the problem. Almost all the familiar special
functions have arisen from a wide diversity of applied problems, so the study of their proper-
ties and their applications has engaged not only mathematics but also physicists, astronomers,
engineers, and other specialists.

Furthermore, fractional calculus of special functions, which perform fractional differentiation
or integration of functions, is gaining popularity due to its numerous scientific, technological, and
engineering applications. So, the current review article dives into recent mathematical findings
on generalizations of special functions and polynomials related to various fractional calculus
operators (FCOs). Also emphasized is their importance and extensive utility in dealing with the
most well-known topics: integral transformations, initial value problems, and kinetic equations.

More precisely, we discuss analytic properties and numerical exemplifications of extensions
Beta and hypergeometric functions associated with fractional calculus operators. Moreover,
some developments and applications of orthogonal matrix polynomials, such as the generalized
Bessel matrix polynomials and the generalized Jacobi matrix polynomials, have been consid-
ered. Furthermore, novel generalizations of fractional kinetic equations involving certain special
functions and their solutions using the various integral transforms have been shown. Finally,
some important points that can be suitable to be future works are summarized.

Keywords and phrases: Special functions, fractional operators, integral transforms, Frac-
tional kinetic equations.
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1 Introduction

1.1 What are the special functions?

The concept of special functions (SFs) refers to a class of mathematical functions that appear in
a variety of situations, most notably in differential equation, mathematical physics, chemistry,
and other fields, see, for instance, Sneddon (1956)[1], Nikiforov and Uvarov (1988)[2], and Bell
(2004)[3]. These functions frequently possess unique qualities, behaviors, or forms that make
them very valuable in applications. Moreover, the term special functions is applied to functions
that are not trivial. In some sense the polynomials are the most special of all to the extent of
being boring. The next simplest is the family of exponential functions the usual real exponential,
the trigonometric and hyperbolic functions, and the general complex exponential that incorpo-
rates all of them and their inverse functions. These may have been supposed to be boring but, as
we shall see, they are interesting. They can be taken as solutions of first-order differential equa-
tions. The next lot of special functions is the solutions of the linear second-order differential
equations of mathematical physics and engineering. These include the Legendre polynomials
and functions, the Laguerre, the Hermite, the Chebyshev, the Jacobi,the Gegenbauer, the Bessel
and related functions and some others. All of them arise as special cases of the generalized
hypergeometric functions U = pFq of p numerator and q denominator parameters (see, Dwork
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(1990) [4]) that are solutions of the differential equation
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and (a)m is the usual Pochhammer symbol (or the rising factorial). For p = 2 and q = 1, we get
the Gauss hypergeometric function 2F1.

The other functions are those that arose in the theory of numbers. It is of interest to follow
them in more detail. The first of them, the Gamma function (Euler integral of the second kind),
a generalization of the factorial function defined for integers to the real domain and thence to the
complex domain (see, Davis (1959) [5]):

Γ(κ) :=
∫ ∞

0
e−y yκ−1 dy, Re(κ) > 0. (1.3)

The function Γ is closely related to the Beta function (Euler integral of the first kind)

B(κ1,κ2) =

∫ 1

0
yκ1−1(1 − y)κ2−1 dy

=
Γ(κ1)Γ(κ2)

Γ(κ1 + κ2)
Re(κ1,κ2) > 0.

(1.4)

By using the Gamma function (1.3). Swedish Mathematician Gosta Mittag-Leffler (1903) [6]
introduced the following Mittag-Leffler function of one parameter

Eα(y) =
∞∑
r=0

yr

Γ(rα+ 1)
, Re(α) > 0. (1.5)

This function is the direct generalization of the exponential function and is known as the queen
of the functions of fractional calculus. For other generalizations, properties, and applications of
the Mittag-Leffler functions, the reader might consult the work by Haubold et al. (2001)[7].

Further, SFs are often highly studied, and their properties such as differential (or differ-
ence ) equations, asymptotic behavior, recurrence relations, integral formulas, orthogonality,
Rodrigues’ formulas, and generating functions, are extensively documented. These attributes
render them effective tools for swiftly addressing intricate issues.

On top of that, recently special matrix functions (SMFs) appear in connection with statistics,
Lie group theory, and theoretical physics. Many authors have dealt with orthogonal matrix poly-
nomials and their applications, For examples, Hermite, Laguerre, Chebyshev, Jacobi, Gegen-
bauer, Bessel and Legendre matrix polynomials were introduced and established, see, tutorial
survey by Abdalla (2020) [8].

Next, further details will be provided about the importance of relationships between SFs and
both fractional calculus operators (FCOs) and integral transforms (ITs).

1.2 Fractional calculus operators

The notion “Fractional Calculus” (FC) or “Fractional Analysis” is used for the extension of the
Calculus (Analysis), when the order of integration and differentiation can be an arbitrary number
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(fractional, irrational, complex), that is, not obligatory integer. The FC is nowadays one of the
most rapidly growing subjects of mathematical analysis in spite of the fact that it is nearly 300
years old. Where the giants of mathematics, W. Leibniz (1697), L. Euler (1730), thought about
the possibility to perform differentiation of non-integer order.

The real birth and far-reaching development of the FC is due to numerous attempts of math-
ematicians during the nineteenth century to beginning of twentieth century. It is practically
impossible to name all important contributions made in construction of early stages of building
of the FC. For example, see the survey by Machado and Kiryakova (2010)[9, 10], Machado et
al. (2010)[11].

In the same vein, fractional calculus operators (FCOs), which handle non-integer (fractional)
ordering on functions as a type integral transform convolutions. It is an extension of classical
operators, which originated and developed with the pioneering contributions of Lacroix (1819),
Liouville (1832), Letnikov (1868), Riemann (1876), Hadamard (1892), Weyl (1919), Caputo
(1967) and numerous others [12]. In the literature, FCOs are defined in a wide variety of ways.
Two widely used operators are the Riemann-Liouville and Caputo fractional operators [13]. Nev-
ertheless, among the monographs developing the theory of FCOs involving various special func-
tions and presenting some applications, we have to point out works by, Oldham and Spanier
(1974) [14], Lovoie (1976)[15] Kilbas (2005) [16], Kiryakova (2008)-(2020)[17, 18], Srivastava
(2015)[19], Kochubei (2019)[20], Sandev (2022)[21], and Singh (2023)[22].

Let us now begin with some various representations for FCOs.

The Riemann-Liouville-Caputo fractional operators

The Riemann-Liouville fractional integral operator (RLFIO) of order ν, introduced by Bernhard
Riemann and Joseph Liouville, is defined as

0D
−ν
w f(w) := (Iνf)(w) :=

1
Γ(ν)

∫ w

0
(w − u)ν−1f(u)du, Re(ν) > 0, (1.6)

where Γ denots the Gamma function defined in (1.3), and the Riemann-Liouville fractional dif-
ferential operator (RLFDO) of order µ, defined as

Dµ
wf(w) := Dn

(
In−µf(w)

)
, n− 1 < Re(µ) < n. (1.7)

In 1967, Italian Caputo defined the Caputo fractional derivative operator (CFDO) as

Dµ
wf(w) :=

1
Γ(n− µ)

∫ w

0
(w − u)n−µ−1 dn

dun
f(u)dt, (1.8)

where n− 1 < Re(µ) < n.

Recently, many generalizations of RLFOs and CFDOs have been considered, such as the Hil-
fer, Hadamard, Katugampola, Hilfer-Caputo, and Hadamard-Caputo fractional operators, extend
of (1.6), (1.7) and (1.8) by introducing additional parameters or kernel functions. In particular,
Mubeen and Habibullah (2012) [23] defined the k−RLFIO by

(
Iυkf(τ)

)
(x) =

1
kΓk(υ)

∫ x

0
f(τ)(x− τ)

υ
k−1 dτ ; υ, k > 0. (1.9)

Due to this, the k− RLFIO of order υ introduced by Rahman et al. (2020) [?] as

Dυ
k

{
f(η)

}
= D

(
I
(1−υ)
k f(η)

)
; 0 < υ ≤ 1, D =

d

dη
. (1.10)

where Γk(y) is the k−Gamma function
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Γ
k(y) =

∫ ∞

0
uy−1e−

yk

k du, y ∈ C \ kZ−. (1.11)

These formulas have been applied in many recent works (see, e.g., [24, 25, 26])

The Hadamard fractional operators

Definition 1.1. [27] Let 0 ≤ a ≤ b ≤ ∞, be finite or infinite interval of the half-axis R+. The
Hadamard fractional integral operators of order α ∈ C are defined by

(HIα
a+φ) (x) =

1
Γ(α)

∫ x

a

(
log

x

t

)α−1
φ(t)

dt

t
, a < x < b,

(
HIα

b−φ
)
(x) =

1
Γ(α)

∫ b

x

(
log

t

x

)α−1

φ(t)
dt

t
, a < x < b.

(1.12)

The left-sided and right-sided Hadamard fractional derivative operators of order α ∈ C,
n ∈ N with Re(α) ≥ 0 on (a, b) and a < x < b are defined by

(HDα
a+φ) (x) = δn

(
HIn−α

a+ φ
)
(x)

=

(
x
d

dx

)n 1
Γ(n− α)

∫ x

a

(
log

x

t

)n−α−1 φ(t)dt

t
,(

HDα
b−φ

)
(x) = (−δ)n

(
HIn−α

b− φ
)
(x)

=

(
−x

d

dx

)n 1
Γ(n− α)

∫ b

x

(
log

t

x

)n−α−1
φ(t)dt

t
.

(1.13)

If Re(α) > 0,Re(β) > 0 and 0 < a < b < ∞, then we have(
HIα
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(
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t
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)
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(
log

x

a
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(1.14)

The Marichev-Saigo-Maeda fractional operators

In 1974, Marichev [28] introduced fractional integral operators as Mellin type convolution op-
erator with the Appell function F3 in their kernel. In the middle of the 1990s, these fractional
integral operators were rediscovered and studied by Saigo (1978-1980) [29, 30], extended and
investegated later after that by Saigo and Maeda (1996) [31] and by Saigo and Saxena (2001)
[32] as generalizations of the celebrated Saigo fractional integral operators.

The generalized fractional calculus operators (the Marichev-Saigo-Maeda operators) involv-
ing the Appell’s function or Horn’s F3 function in the kernel are defined as follows:

Definition 1.2. Let σ, σ′, v, ν′, η ∈ C and x > 0, then for Re(η) > 0(
Iσ,σ

′,v,v′,η
0,x f

)
(x)

=
x−σ

Γ(η)

∫ x

0
(x− t)η−1t−σ′

F3

(
σ, σ′, v, v′; η; 1 − t

x
, 1 − x

t

)
f(t)dt,

(1.15)

and (
Iσ,σ

′,v,v′,η
x,∞ f

)
(x)

=
x−σ′

Γ(η)

∫ ∞

x

(t− x)η−1t−σF3

(
σ, σ′, v, v′; η; 1 − x

t
, 1 − t

x

)
f(t)dt,

(1.16)
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provided that the function f(t) is so constrained such that the integrals in Equations (1.15)
and (1.16) exist.

In Equations (1.15) and (1.16), F3 denotes the Appell’s hypergeometric function [33] in two
variables defined as:

F3 (σ, σ
′, v, v′; η;x, y)

=
∞∑

m,n=0

(σ)m (σ′)n (ν)m (v′)n
(η)m+n

xm

m!
xn

n!
, (max{|x|, |y|} < 1).

(1.17)

Then the above fractional integral operators in Equations (1.15) and (1.16), can be written as
follows: (

Iσ,σ
′,ν,v′,η

0,x f
)
(x) =

(
d

dx

)k (
Iσ,σ

′,ν+k,v′,η+k
0,x f

)
(x)

(Re(η) < 0; k = [−Re(η) + 1]),

(1.18)

and

(
Iσ,σ

′,v,v′,η
x,∞ f

)
(x) =

(
− d

dx

)k (
Iσ,σ

′,v,ν′+k,η+k
x,∞ f

)
(x)

(Re(η) < 0; k = [−Re(η) + 1]).

(1.19)

Remark 1.3. It is worthy to note that the Appell function defined in Equation (1.17) reduces to
the Gauss hypergeometric function 2F1 as given in the following relations:

F3(σ, η − σ, v, η − v; η;x, y) = 2F1(σ, v; η;x+ y − xy),

also we have

F3 (σ, 0, v, v′, η;x, y) = 2F1(σ, v; η;x),

and

F3 (0, σ′, v, v′, η;x, y) = 2F1 (σ
′, v′; η; y) .

The corresponding Marichev-Saigo-Maeda fractional differential operators are given as fol-
lows:

Definition 1.4. Let σ, σ′, v, v′, η ∈ C and x > 0, Then

(
Dσ,σ′,v,v′,η

0,x f
)
(x) =

(
I−σ′,−σ,−v′,−v,−η

0,x f
)
(x)

=

(
d

dx

)k (
I−σ′,−σ,−v′+k,−v,−η+k

0,x f
)
(x), (Re(η) > 0; k = [Re(η)] + 1)

=
1

Γ(k − η)

(
d

dx

)k

(x)σ
′
∫ x

0
(x− t)k−η−1tσ

× F3

(
−σ′,−σ, k − v′,−v; k − η; 1 − t

x
, 1 − x

t

)
f(t)dt,

(1.20)

and
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(
Dσ,σ′,v,v′,η

x,∞ f
)
(x) =

(
I−σ′,−σ,−v′,−v,−η
x,∞ f

)
(x)

=

(
− d

dx

)k (
I−σ′,−σ,−v′,−v+k,−η+k
x,∞ f

)
(x), (Re(η) > 0; k = [Re(η)] + 1)

=
1

Γ(k − η)

(
− d

dx

)k

(x)σ
∫ ∞

x

(t− x)k−η−1tσ
′

× F3

(
−σ′,−σ,−v′, k − v; k − η; 1 − x

t
, 1 − t

x

)
f(t)dt.

(1.21)

In view of the above reduction formula as given in Equation (2.7), the generalized fractional
calculus operators reduce to the Saigo operators [?] defined as follows:

Definition 1.5. Let x > 0, σ, ν, η ∈ C and Re(σ) > 0, then(
Iσ,v,η0,x f

)
(x) =

x−σ−v

Γ(σ)

∫ x

0
(x− t)σ−1

2F1

(
σ + v,−η;σ; 1 − t

x

)
f(t)dt,

and

(
Iσ,v,ηx,∞ f

)
(x) =

1
Γ(σ)

∫ ∞

x

(t− x)σ−1t−σ−v
2F1

(
σ + v,−η;σ; 1 − x

t

)
f(t)dt.

The Saigo fractional integral operators, given in Equations (2.11) and (2.12) can also be
written as:

Let x > 0, σ, v, η ∈ C, then

(
Iσ,v,η0,x f

)
(x) =

(
d

dx

)k (
Iσ+k,v−k,η−k

0,x f
)
(x)

(Re(σ) < 0; k = [Re(−σ)] + 1),

and

(
Iσ,v,ηx,∞ f

)
(x) =

(
− d

dx

)k (
Iσ−k,ν−k,η
x,∞ f

)
(x)

(Re(σ) < 0; k = [Re(−σ)] + 1).

The corresponding Saigo fractional differential operators are defined as:

Definition 1.6. Let σ, v, η ∈ C and x > 0. Then

(
Dσ,v,η

0,x f
)
(x) =

(
I−σ,−v,σ+η

0,x f
)
(x) =

(
d

dx

)k (
I−σ+k,−v−k,σ+η−k

0,x f
)
(x)

(Re(σ) > 0; k = [Re(σ)] + 1),

and

(
Dσ,ν,η

x,∞ f
)
(x) =

(
I−σ,−ν,σ+η
x,∞ f

)
(x) =

(
− d

dx

)k (
I−σ+k,−ν−k,σ+η
x,∞ f

)
(x)

(Re(σ) > 0; k = [Re(σ)] + 1),

where [x] denotes the integer part of x.
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If we take v = 0 in Equations (2.11), (2.12), (2.15) and (2.16), we get the socalled Erdélyi-
Kober fractional integral and derivative operators defined as follows[34]:

Definition 1.7. Let x > 0, σ, η ∈ C with Re(σ) > 0, then(
Iσ,η0,x f

)
(x) =

x−σ−η

Γ(σ)

∫ x

0
(x− t)σ−1tηf(t)dt,

and

(
Iσ,ηx,∞ f

)
(x) =

xη

Γ(σ)

∫ ∞

x

(t− x)σ−1t−σ−ηf(t)dt.

provided that integrals in Equations (2.17) and (2.18) converge.

The corresponding derivative operators are defined as:

Definition 1.8. Let x > 0, σ, η ∈ C with Re(σ) > 0, then

(
Dσ,η

0,x f
)
(x) =x−η

(
d

dx

)k 1
Γ(k − σ)

∫ x

0
tσ+η(x− t)k−σ−1f(t)dt

=

(
d

dx

)k (
I−σ+k,−σ,σ+η−k

0,x f
)
(x), (k = [Re(σ)] + 1),

and

(
Dσ,η

x,∞ f
)
(x) =xη+σ

(
d

dx

)k 1
Γ(k − σ)

∫ ∞

x

t−η(t− x)k−σ−1f(t)dt

= (−1)k
(

d

dx

)k (
I−σ+k,−σ,σ+η
x,∞ f

)
(x), (k = [Re(σ)] + 1).

When v = −σ, the operators in Equations (2.11), (2.12), (2.15) and (2.16) give the Riemann-
Liouville and the Weyl fractional integral operators are defined as follows:

Definition 1.9. Let x > 0, σ ∈ C with Re(σ) > 0, then

(
Iσ0,x f

)
(x) =

1
Γ(σ)

∫ x

0
(x− t)σ−1f(t)dt,

and

(
Iσx,∞ f

)
(x) =

1
Γ(σ)

∫ ∞

x

(t− x)σ−1f(t)dt.

provided that both integrals converge.

The corresponding derivative operators are defined as follows:

Definition 1.10. Let x > 0, σ ∈ C with Re(σ) > 0, then

(
Dσ

0,x f
)
(x) =

(
d

dx

)k 1
Γ(k − σ)

∫ x

0
(x− t)k−σ−1f(t)dt

=

(
d

dx

)k (
Ik−σ

0,x f
)
(x), (k = [Re(σ)] + 1),

and
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(
Dσ

x,∞ f
)
(x) = (−1)k

(
d

dx

)k 1
Γ(k − σ)

∫ ∞

x

(t− x)k−σ−1f(t)dt

= (−1)k
(

d

dx

)k (
Ik−σ
x,∞ f

)
(x), (k = [Re(σ)] + 1).

For more detail about such operators along with their properties and applications, one may
refer [35, 36, 37].

Power functions formulas of the above discussed fractional operators required for our present
study are given in the following lemmas (see [30, 31, 32]):

Lemma 1.11. Let σ, σ′, v, ν′, η and ρ ∈ C, x > 0 be such that Re(η) > 0, then the following
formulas hold true:

(
Iσ,σ

′,v,v′,η
0,x tρ−1

)
(x)

=
Γ(ρ)Γ (ρ+ η − σ − σ′ − v)Γ (ρ+ v′ − σ′)

Γ (ρ+ v′)Γ (ρ+ η − σ − σ′)Γ (ρ+ η − σ′ − v)
xρ+η−σ−σ′−1

(Re(ρ) > max {0,Re (σ + σ′ + v − η)Re (σ′ − v′)}) ,

and

(
Iσ,σ

′,ν,v′,η
x,∞ tρ−1

)
(x)

=
Γ(1 − ρ− v)Γ (1 − ρ− η + σ + σ′)Γ (1 − ρ− η + σ + v′)

Γ(1 − ρ)Γ (1 − ρ− η + σ + σ′ + ν′)Γ(1 − ρ+ σ − v)
xρ+η−σ−σ′−1

(Re(ρ) < 1 + min {Re(−v),Re (σ + σ′ − η) ,Re (σ + v′ − η)}) .

Lemma 1.12. Let σ, σ′, v, ν′, η and ρ ∈ C, x > 0 be such that Re(η) > 0, then the following
formulas hold true:

(
Dσ,σ′,v,v′,η

0,x tρ−1
)
(x)

=
Γ(ρ)Γ (ρ− η + σ + σ′ + v′)Γ(ρ− v + σ)

Γ(ρ− v)Γ (ρ− η + σ + σ′)Γ (ρ− η + σ + v′)
xρ−η+σ+σ′−1

(Re(ρ) > max {0,Re (η − σ − σ′ − v′) ,Re(ν − σ)}) ,

and

(
Dσ,σ′,v,v′,η

x,∞ tρ−1
)
(x)

=
Γ (1 − ρ+ v′)Γ (1 − ρ+ η − σ − σ′)Γ (1 − ρ+ η − σ′ − v)

Γ(1 − ρ)Γ (1 − ρ+ η − σ − σ′ − v)Γ (1 − ρ− σ′ + v′)
xρ−η+σ+σ′−1

(Re(ρ) < 1 + min {Re (v′) ,Re (η − σ − σ′) ,Re (η − σ′ − v)}) .

2 Integral Transforms

The integral transform (IT) is a mathematical method for translating a differential equation into
an algebraic equation. By using this method, a challenging mathematical issue can be reduced
to a more manageable one. By integrating the result of a function and another function, known
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as the kernel of the integral transform, the integral transform mathematical operator can create a
result function. The integral transform can be expressed generally as follows:

F(κ) = T(f(y)) =
∫

f(y)K(y,κ)dy,

where, F(κ) represents the function produced by the integral transform and K(y,κ) a kernel
function. The inverse integral transform is given by

f(y) =

∫
T(f(κ))K−1(κ, y)dκ,

where K−1(κ, y) is the kernel of the inverse integral transform.

We will now provide a discussion of a number of significant integral transforms.

2.1 Fourier transform

The Fourier transform, the Fourier cosine transform, and the Fourier sine transform can be ef-
fectively used for solving differential and integral equations. These transforms are also use-
ful in evaluating integrals involving special functions. The reader may refer, for example to,
[35, 36, 37, 38].

If f is an absolutely integrable function, the Fourier transforms are defined by [35, 36]

F{f(t)} = F (k) =

∫ ∞

−∞
f(t)e−2πkitdt, k ∈ R,

and
F−1{F (k)} = f(t) =

∫ ∞

−∞
F (k)e2πiktdk.

Further, the fractional Fourier transform (FFT) of order β; 0 < β ≤ 1, is defined as

φβ(ω) = Fβ[φ](ω) =

∫
R

eiω
1
β ξ φ(ξ)dξ, i =

√
−1. (2.1)

2.2 Laplace transform

The Laplace transform of f(t) is formally defined by [35, 36]

L{f(t)} = f̄(s) =

∫ ∞

0
e−stf(t)dt, Re s > 0, (2.2)

The inverse Laplace transform is

L−1{f̄(s)} = f(t) =
1

2πi

∫ c+i∞

c−i∞
estf̄(s)ds, c > 0. (2.3)

The Laplace transform is highly efficient for solving some class of ordinary and partial differ-
ential equations. A variety of extended Laplace-type transforms are introduced for example in
[36, 37, 38, 39, 40].

2.3 Pathway-type transform

The pathway-type transform (Pς−transform) is given in [41, 42] in the form

Pς [f(w), φ] = F (φ) =

∫ ∞

0
[1 + (ς − 1)φ]

−w
ς−1 f(w)dw ς > 1, (2.4)

with

lim
ς→1+

[1 + (ς − 1)φ]
−w
ς−1 = e−ϕw, (2.5)
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and

lim
ς→1+

Pς [f(w), φ] = L[f(w), φ], (2.6)

where (L[., .]) is the Laplace transform (2.2).

Some basic results of the Pς− transform are given in [41] as follows

Pς [1, φ] =
ς − 1

ln[1 + (ς − 1)φ]
, (2.7)

Pς [w
υ, φ] =

{ ς − 1
ln[1 + (ς − 1)φ]

}υ+1
Γ(υ + 1), υ ∈ C, (2.8)

and

Pς [ 0D
−α
w f(w), φ] =

[ ς − 1
ln[1 + (ς − 1)φ]

]α
Pς [f(w), φ], Re(α) > 0, ς > 1, (2.9)

where 0D
−α
w f(w) is given in (1.6).

More information about the Pς−transform and its applications may be found in [41, 42].

2.4 Hankel transform

The Hankel transform (also designated as Fourier-Bessel transform) is a fundamental tool in
many areas of mathematical statistics, physics, engineering, probability theory, analytic number
theory, data analysis, etc (see, for instance, [41, 42, 43, 44, 45, 46]). The integral

Hν{f(t); q} =

∫ ∞

0
qJν(qt) f(t) dt, q > 0, R(ν) >

1
2
, (2.10)

defines the Hankel transform involving the νth-order Bessel function of first kind Jν(η) [45] as
a kernel. Its inverse transform is

f(t) = H−1
ν {f̃(q)}(t) =

∫ ∞

0
qJν(tq)f̃(q)dq, t > 0. (2.11)

2.5 Mellin transform

The Mellin integral transform is similar with the Laplace transform and Fourier transform and
is widely applied in computer science and number theory due to its invariant properties [35, 36].
The Mellin transform of a suitable integrable function f(t) is defined by

f̃(p) = M
{
f(t)

}
(p) =

∫ ∞

0
tp−1 f(t) dt, p ∈ C, (2.12)

provided that the improper integral in (2.12) exists. The inverse Mellin transform is

f(t) = M−1
{
f̃(p)

}
(t) =

1
2πi

∫ c+i∞

c−i∞
t−p f̃(p) dp, (2.13)

where c ∈ \{p} is a constant.

Further, there are two convolution Type theorems for the Mellin transform. If M{f(t)} =
f̃(p) and M{g(t)} = g̃(p), then

M [f(t) ∗ g(t)] = M

[∫ ∞

0
f(ξ)g

(
t

ξ

)
dξ

ξ

]
= f̃(p)g̃(p),

M [f(t) ◦ g(t)] = M

[∫ ∞

0
f(tξ)g(ξ)dξ

]
= f̃(p)g̃(1 − p).

(2.14)
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2.6 Beta transform

The Beta transform of f(z) is defined as [48, 49]:

B{f(z) : a, b} =

∫ 1

0
za−1(1 − z)b−1f(z)dz. (2.15)

The matrix version of the Beta transform of f(z) is defined as

B{f(z) : P,Q} =

∫ 1

0
zP−I(1 − z)Q−If(z)dz, (2.16)

where P and Q are positive stable matrices in the complex matrix space of common order
n; Cn×n.

For f(z) = 1, we get the Beta matrix function given by Jodar and Cortés (1998) [50] as

B (P,Q) =

∫ 1

0
tP−I (1 − t)

Q−I
dt. (2.17)

2.7 Whittaker transform

The Whittaker transform is defined in [51] as

W(z) =

∫ ∞

0
(2zt)

−1
4 Wλ,µ(2zt) f(t) dt, (2.18)

whereWλ,µ(t) is the Whittaker function. For λ = 1
4 and µ = ± 1

4 the Whittaker transform goes
over into the Laplace transform.

3 Fractional Kinetic Equations

The kinetic (reaction-type) equations have prime importance as mathematical tools widely used
in describing several astrophysical and physical phenomena. The production and destruction of
nuclei in the chemical (thermonuclear) reactions can be described by the reaction-type (kinetic)
equations. Reactions characterized by a time dependent quantity N = N(t) can be formally
represented by the following Cauchy problem (See, Haubold and Mathai [52])

dN

dt
= −δ(N) + p(N), N(0) = N0, (3.1)

where δ and p are the destruction rate and the production rate of N , respectively, and N0 is the
initial data. Haubold and Mathai [52] studied the following special case of the Cauchy problem,

dN

dt
= −ϑN, ϑ ∈+, N(0) = N0. (3.2)

Equation (3.2) is known as the standard kinetic equation. An alternative form of equation (3.2)
can be obtained as

N(t)−N0 = −ϑ 0D
−1
t N(t), ϑ, t ∈ R+, (3.3)

where 0D
−1
t is the standard integral operator. Haubold and Mathai [52] have introduced a frac-

tional generalization of the standard kinetic equation (3.3) as

N(t)−N0 = −ϑν
0D

−ν
t N(t), ϑ, t ∈ R+, (3.4)

where 0D
−ν
t is defined in (1.6). The solution of the fractional kinetic equation (3.4) takes the

form

N(t) = N0

∞∑
n=0

(−1)n

Γ(νn+ 1)
(ϑt)νn. (3.5)

Further extensions and generalizations of kinetic fractional equations involving many fractional
operators have grown interest in applied science not only in mathematics but also in dynamical
systems, physical phenomena, engineering and control systems (see, [53, 54, 55]).
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4 Related Works

Several research have been conducted to study generalizations of the SFs. This section reviews
some works related to the generalized SFs associated with FCOs and ITs.

4.1 Fractional operators for the Wright hypergeometric matrix function

The generalized (Wright) hypergeometric function were first studied by Virchenko et al.(2001)[56]
as follows

2R
(τ)
1 (a, b; c; z) =

Γ(c)

Γ(b)

∞∑
n=0

(a)nΓ(b+ τn)

Γ(c+ τn)

zn

n!
, τ > 0, |z| < 1. (4.1)

The matrix version of (4.1) was introduced by Bakhet et al. (2019) [57] as follows,

Definition 4.1. Let A, B and C be positive stable matrices in Cn×n such that the matrix C + nI
is invertible for every integer n ≥ 0. Then, the Wright hypergeometric matrix function (WHMF)
is defined in the form:

2R
(τ)
1 (A,B;C; z) :=Γ

−1(B)Γ(C)

×
∞∑
n=0

(A)nΓ
−1(C + τnI)Γ(B + τnI)

zn

n!
,

(4.2)

where τ ∈ R+ = (0,∞) for all integer n ≥ 0, and

(A)n =


A(A+ I)...(A+ (n− 1)I) = Γ−1(A)Γ(A+ nI), n ≥ 1,

I, n = 0,
(4.3)

is the Pochhammer symbol of a matrix A, where

Γ(A) =

∫ ∞

0
e−w wA−Idw, wA−I = exp((A− I) lnw), (4.4)

is the Gamma matrix function (see [57]). For τ = 1, (4.2) reduces to the Gauss hypergeometric
matrix function which is defined by Jódar and Cortés (1998) [50].

In this section, we investigate new properties of the WHMF in (4.2). Further, we introduce the
Wright type hypergeometric matrix functions by using the FCOs in (1.6) and (1.7), as follows,

R(w;A,B; ν;λ) =
wν

Γ(ν + 1) 2F1(A,B; (ν + 1)I;λw)(
w, ν, λ ∈ C andA,B ∈ Cn×n

)
,

(4.5)

and

R(w;A,B;−µ;λ) =
w−µ

Γ(1 − µ)
2F1(A,B; (1 − µ)I;λw)(

w, µ, λ ∈ C andA,B ∈ Cn×n
)
.

(4.6)

• Main Results

Theorem 4.2. [58]. Let A,B and C be positive stable matrices in Cn×n. Then for τ > 0, m >
0, the following integrals hold true:
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∫ ∞

0
exp

(−um

zm

)
uC−(τ+1)I

[ ∞∑
n=0

(A)n Γ(B + τnI)Γ(C)

× Γ
−1(B)Γ−1(C + τnI)Γ−1(C − (τ + n)I

m

)
un

]
du

=
zC−τI

m
2R

(τ)
1 (A,B;C; z), |z| < 1.

(4.7)

∫ 1

0
zm 2R

(τ)
1 (A,B;mI; zτ )dz =

2R
(τ)
1 (A,B; (m+ 1)I; 1)

m

− 2R
(τ)
1 (A,B; (m+ 2)I; 1)

m(m+ 1)
, |zτ | < 1.

(4.8)

Theorem 4.3. [58]. Let A and B be positive stable matrices in Cn×n such that B + nI is
invertible for all integer n ≥ 0 and |z| < 1, then

(s+ 1) 2R
(τ)
1 (A,B; (s+ 1)I; z)− 2R

(τ)
1 (A,B; (s+ 2)I; z)

=

{
τ 2

(s+ 2)
} z2 d2

dz2

(
2R

(τ)
1 (A,B; (s+ 3)I; z)

)
+ z

τ

(s+ 2)
{τ + 2(s+ 1)

}

× d

dz

(
2R

(τ)
1 (A,B; (s+ 3)I; z)

)
+ s 2R

(τ)
1 (A,B; (s+ 3)I; z), Re(s) > 0.

(4.9)

Theorem 4.4. [58]. Let A and B be positive stable matrices in Cn×n with B + nI is invertible
for all integer n ≥ 0 and λ, µ ∈ C such that |λw| < 1, Re(µ) < 1. Then

IγR(w;A,B; ν;λ) = R(w;A,B; ν + γ;λ), (4.10)

DγR(w;A,B; ν;λ) = R(w;A,B; ν − γ;λ), (4.11)

IγR(w;A,B;−µ;λ) = R(w;A,B; γ − µ;λ), (4.12)

and

DγRw(A,B; ν;λ) = R(w;A,B;−(γ + µ);λ). (4.13)

Theorem 4.5. [58]. Let C be a positive stable matrix in Cn×n, The Laplace transform of
R(w;−nI,C + (n− 1)I; ν;λ) and R(w;−nI,C + (n− 1)I;−µ;λ); n ∈ N are given as

L
{
R(w;−nI,C + (n− 1)I; ν;λ)

}
=

1
sν+1 Yn(C;λ,−s), (4.14)

and

L
{
R(w;−nI,C + (n− 1)I;−µ;λ)

}
=

1
sµ−1 Yn(C;λ,−s), (4.15)

where Yn(C;λ,−s) is the generalized Bessel matrix polynomial [58].
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4.2 Results on the generalized hypergeometric matrix functions

The generalized Gauss and Confluent hypergeometric matrix functions are presented by Abdall
et al. (2021) [60] as follows.

Definition 4.6. Assume that A,B,A∗, B∗, C∗ and C∗−B∗ are positive stable matrices in Cn×n,
such that B∗C∗ = C∗B∗ and p be a number with Re(p) > 0. Then, the generalized Gauss
hypergeometric matrix function (GGHMF) is defined by

F (A,B)(A∗, B∗;C∗; z; p) =
∞∑
n=0

(A∗)n B(A,B)(B∗ + nI,C∗ −B∗; p)

× B−1(B∗, C∗ −B∗)
zn

n!
,

(4.16)

and the generalized confluent hypergeometric matrix function (GCHMF) in the form

1F
(A,B)
1 (B∗;C∗; z; p) =

∞∑
n=0

B(A,B)(B∗ + nI,C∗ −B∗; p)

× B−1(B∗;C∗ −B∗)
zn

n!
.

(4.17)

Founded on the generalized Beta matrix function

B(A,B)(B∗, C∗; p) =
∫ 1

0
tB

∗−I (1 − t)C
∗−I

1F1

(
A;B;

−p

t(1 − t)

)
dt. (4.18)

and the Beta matrix function B (A,B) is given in (2.17).

Next, we give some new results for the GGHMF and GCHMF by the following theorems.

Theorem 4.7. [60]. For the GGHMF F (A,B)(A∗, B∗;C∗; z; p), the following integral form holds
true.

F (A,B)(A∗, B∗;C∗; z; p)

=

∫ 1

0
(1 − tz)−A∗

tB
∗−I(1 − t)C

∗−B∗−I

× B−1(B∗, C∗ −B∗)1F1

(
A;B;

−p

t(1 − t)

)
dt,

(4.19)

where |arg(1 − z)| < π.

Theorem 4.8. [60]. For the GGHMF with |arg (1 − z)| < π, then the following transformation
formula holds true

F (A,B)(A∗, B∗;C∗; z; p) = (1 − z)−A∗
F (A,B)

(
A∗, C∗ −B∗;C∗;

z

z − 1
; p
)
.

Theorem 4.9. [60]. The GGHMF F (A,B)(A∗, B∗;C∗; z; p) verifies the recurrence relation

B(B∗ + 3I;C∗ −B∗ + 3I) p
d2

dp2

[
F (A,B)(A∗, B∗ + 3I;C∗ + 6I; z; p)

]
−B(B∗ + 2I;C∗ −B∗ + 2I)B

d

dp

[
F (A,B)(A∗, B∗ + 2I;C∗ + 4I; z; p)

]
−B(B∗ + I;C∗ −B∗ + I) p

d

dp

[
F (A,B)(A∗, B∗ + I;C∗ + 2I; z; p)

]
+AF (A,B)(A∗, B∗;C∗; z; p) = 0. (4.20)
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Theorem 4.10. [60]. For the GCHMF 1F
(A,B)
1 (B∗;C∗; z; p), the following recurrence relation

holds true

B(B∗ + 3I;C∗ −B∗ + 3I) p
d2

dp2

[
1F

(A,B)
1 (B∗ + 3I;C∗ + 6I; z; p)

]
−B(B∗ + 2I;C∗ −B∗ + 2I)B

d

dp

[
1F

(A,B)
1 (B∗ + 2I;C∗ + 4I; z; p)

]
−B(B∗ + I;C∗ −B∗ + I) p

d

dp

[
1F

(A,B)
1 (B∗ + I;C∗ + 2I; z; p)

]
+A 1F

(A,B)
1 (B∗;C∗; z; p) = 0.

Theorem 4.11. [60]. The following Beta matrix transform formula holds true:

B

{
F (A,B)(P +Q,B∗;C∗; yz; p) : P,Q

}
=B(P,Q)F (A,B)(P,B∗;C∗;w; p),

(4.21)

where A,B,B∗, C∗, P,Q, P + Q are positive stable matrices and commuting in Cn×n with
(Re(p) ≥ 0, |w| < 1).

Theorem 4.12. [60]. If Re(s) > 0,Re(p) ≥ 0, M ∈ Cn×n and | x
s |< 1, then the Laplace

transform given in (2.2), holds true:

L
{
zM−IF (A,B)(A∗, B∗, C∗, xz; p)

}
= s−M

Γ(M) 1F
(A,B)(A∗,M,B∗;C∗;

x

s
; p).

(4.22)

Theorem 4.13. [60]. If ρ, δ ∈ C, Re(p) ≥ 0 and | w
δ |< 1, then the following Whittaker

transform formula (2.18) holds true,∫ ∞

0
tρ−1e

−δt
2 Wλ,µ(δt) F

(A,B)(A∗, B∗;C∗, wt; p)dt

=δ−ρ Γ( 1
2 + µ+ ρ)Γ( 1

2 − µ+ ρ)

Γ(1 − λ+ ρ)
×

2F
(A,B)
1 (A∗, (

1
2
+ µ+ ρ)I, (

1
2
− µ+ ρ)I,B∗;C∗, (1 − λ+ ρ)I;

w

δ
; p).

(4.23)

Remark 4.14. The above results improve and generalize some already known results presented
by Çekim (2013) [61], Agarwal (2014) [49] and Abdalla and Bakhet (2018) [62].

4.3 Certain fractional formulas of the extended k-hypergeometric functions

In 2007, Diaz and Pariguan [63] introduced the k-hypergeometric functions as

Definition 4.15. Let k ∈ R+ and α1, α2, y ∈ C and α3 ∈ C \ Z−
0 , then k-hypergeometric series

is defined in the form

2H
k
1

[
(α1; k), (α2; k)

(α3; k)
; y

]
=

∞∑
n=0

(α1)n,k (α2)n,k
(α3)n,k

.
yn

n!
, |y| < 1

k
, (4.24)

where (·)n,k is the k-Pochhammer symbol given by

(y)n,k =


y(y + k)...(y + (n− 1)k), n ∈ N, y ∈ C

1, n = 0, k ∈ R+, y ∈ C \ {0}.
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Recently, numerous works have been conducted for studying the k-hypergeometric functions,
for example, Asad et al. (2021)[64], Abdalla and Hidan (2021)[65], Jianrong et al. (2022)[66],
and Fuli et al.(2022)[67].

Particulary, Abdalla and Hidan [65] and Hidan et al. [68] introduced and studied several
properties of the following (p, k)-analogues of Gauss hypergeometric function:

2H
(p,k)
1

[
(α1; k), (α2; k)

(α3; k)
;w

]
=

∞∑
j=0

(α1)j,k (α2)j,k
(α3)j,k

.
wj

(pj)!
, (4.25)

which is an entire function for p > 1, where k ∈ R+ and α1, α2, w ∈ C and α3 ∈ C \ Z−
0 .

The purpose of the next section is to continue the investigation of a new formulae like integral
transforms and fractional calculus operators on the (p, k)-analogues of Gauss hypergeometric
function (4.25).

• Main Results

Theorem 4.16. [56]. The Laplace transform for the 2H(p,k)
1 given in (4.25) has the following

form:

L

{
ξ

δ
k−1

2H(p,k)
1

[
(α1, k)(α2, k)

(α3, k)
;uξ

]}

=
kΓk(δ)

(ks)
δ
k

3H(p,k)
1

[
(α1, k)(α2, k)(δ, k)

(α3, k)
;
u

ks

]
,

(4.26)

(
α1, α2, u, ξ ∈ C, α3 ∈ C \ Z−

0 , Re(α1) > 0,Re(α2) > 0,Re(s) > 0, | u
ks
| < 1, k ∈ R+and p ∈ N

)
.

Theorem 4.17. [68]. For α1, α2, w ∈ C, α3 ∈ C\Z−
0 , Re(α1) > 0, Re(α2) > 0, k ∈ R+, p ∈ N

and 0 < β ≤ 1, the following fractional Fourier transform (FFT) hold true:

Fβ

{
2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
;w

])

=
∞∑
n=0

(α1)n,k(α2)n,k
(α3)n,k

(ω)−(n+1
β )(−1)n(i)−(n+1)

× 1
pp+1(n− 1

p)(n− 2
p)..(n− p+1

p )
.

(4.27)

Theorem 4.18. [68]. For α1, α2, ν, u ∈ C, α3 ∈ C \ Z−
0 , Re(α1) > 0,Re(α2) > 0, k ∈ R+, p ∈

N and 0 < Re(ν) ≤ 1, we have

Dν
k

{
u

δ
k 2H(p,k)

1

 (α1, k)(α2, k)

(α3, k)

;u

}

=
λΓk(λ)

kΓk(1 − ν + δ)
u

1−ν+δ
k −1

3H(p,k)
2

 (α1, k)(α2, k)(δ + k, k)

(α3, k)(1 − ν + δ, k)

;u


(4.28)

Theorem 4.19. [68]. Assume that α, β, γ, δ, η, ϑ, α1, α2 ∈ C, α3 ∈ C \ Z−
0 , x > 0, k ∈ R+ and

p ∈ N such that Re (ϑk ) > max
{

0,Re(β − δ),Re(α+ β + γ − η)
}

, then we have
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(
Iα,β,γ,δ,η0,x w

ϑ
k−1

2H
(p,k)
1

[
(α1; k), (α2; k)

(α3; k)
;w

])
(x)

=kη x−α−β+η+ϑ
k−1 Γk(ϑ)Γk(ϑ− kβ + kδ)Γk(ϑ− kα− kβ − kγ + kη)

Γk(ϑ+ kδ)Γk(ϑ− kα− kβ + kη)Γk(ϑ− kβ − kγ + kη)

× 5H
(p,k)
4

[
(α1;k) (α2;k) (ϑ;k) (ϑ−kβ+kδ;k) (ϑ−kα−kβ−kγ+kη;k)

(α3;k) (ϑ+kδ;k) (ϑ−kα−kβ+kη;k) (ϑ−kβ−kγ+kη;k)

;x

]
.

Remark 4.20. By invoking the Definitions (1.5), (1.6), (1.7), (1.8), (1.2), and (1.10), we find
various special cases from Theorem 4.19.

4.4 Extended Euler’s Beta-Logarithmic function

In this section, we introduce a generalization of the Euler’s Beta function (EBF), which we call
the extended Euler’s Beta-Logarithmic function (EEBLF). Also, we discuss various properties
and establish numerical comparisons between this generalization and the previous studies using
MATLAB (R2018a). Furthermore, we present a new version of the Beta distribution and acquire
some of its characteristics as an application in statistics.

The extended Euler’s Beta-Logarithmic function (EEBLF) is defined in [69] as

EBL
[
α, β;u, v; ℓ

]
=

∫ 1

0
α1−w βw wu−1(1 − w)v−1 exp

(
− ℓ

w(1 − w)

)
dw,(

α, β ∈ R+ withα ̸= β,Re(u) > 0,Re(v) > 0, and Re(ℓ) > 0
)
,

(4.29)

Remark 4.21. We see certain particular cases of the EBL
[
α, β;u, v; ℓ

]
as follows:

(i) If α = β = 1, then Eq (4.29) reduces to the extended Beta function (EBF) defined by
Choudhary et al. (1997) [70] in the form

EB (u, v; ℓ) =
∫ 1

0
wu−1(1 − w)v−1 exp

( −ℓ

w(1 − w)

)
dw,(

Re(u) > 0, Re(v) > 0, and Re(ℓ) > 0
)
.

(4.30)

(ii) When ℓ = 0 in (4.29), we obtain the Beta-Logarithmic function (BLF) given by Raïssouli
and Chergui (2022) [71] as

BLmean (θ, ϕ; δ1, δ2) =

∫ 1

0
θ1−u ϕu uδ1−1(1 − u)δ2−1du,(

Re(δ1) > 0, Re(δ2) > 0, θ, ϕ ∈ R+ such that θ ̸= ϕ
)
.

(4.31)

(iii) If u = v = 1, then Eq (4.29) reduces to a new extension of Lmean, which is called the
extended logarithmic mean (ELmean) as

ELmean

[
α, β; ℓ

]
=

∫ 1

0
α1−w βw exp

(
− ℓ

w(1 − w)

)
dw,(

α, β ∈ R+ withα ̸= β, and Re(ℓ) > 0
)
.

(4.32)
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(vi) If we choose ℓ = 0 in (4.32), then we get the Lmean defined by

Lmean

(
θ, ϕ
)
=

∫ 1

0
θ1−x ϕxdx =


θ−ϕ

ln(θ)−ln(ϕ) , θ ̸= ϕ,

θ, otherwise.
(4.33)

(v) Taking α = β = 1 and ℓ = 0 in (4.29), we recover the classical Beta function defined in
(1.4).

Some properties of the EEBLF

Theorem 4.22. [69]. The EBL
[
α, β;u, v; ℓ

]
satisfies the following functional relation:

EBL
[
α, β;u+ 1, v; ℓ

]
+ EBL

[
α, β;u, v + 1; ℓ

]
= EBL

[
α, β;u, v; ℓ

]
.

Theorem 4.23. [69]. The following inequality holds for the EBL
[
α, β;u, v; ℓ

]
:

min(α, β) ≤ EBL
[
α, β;u, v; ℓ

]
≤ max(α, β),(

α, β ∈ R+ withα ̸= β,Re(u) > 0,Re(v) > 0, and Re(ℓ) > 0
)
.

Theorem 4.24. [69]. For α, β ∈ R+ such that α ̸= β, Re(u) > 0, Re(v) > 0, and Re(ℓ) > 0,
the EBL

[
α, β;u, v; ℓ

]
satisfies the following integral representations:

(I)

EBL
[
α, β;u, v; ℓ

]
=2α

∫ π
2

0

(
β

α

)cos2(φ)

cos2u−1(φ) sin2v−1(φ)

× exp
(
−ℓ sec2(φ) csc2(φ)

)
dφ,

(II)

EBL
[
α, β;u, v; ℓ

]
= e−2ℓ

∫ ∞

0
(α)

τ
τ+1 (β)

1
τ+1

× τv−1

(1 + τ)u+v
exp

(
−ℓ(τ + τ−1)

)
dτ,

(III)

EBL
[
α, β;u, v; ℓ

]
=
√

αβ 21−u−v

∫ ∞

0

(
β

α

) τ
2

(1 + τ)u−1(1 − τ)v−1

× exp
(
−4ℓ/(1 − τ 2)

)
dτ.

Theorem 4.25. [69]. For α, β ∈ R+ such that α ̸= β, Re(u) > 0, Re(v) > 0, and Re(ℓ) > 0,
the Mellin transform (2.12) of EEBLF is

M
{

EBL
[
α, β;u, v; ℓ

]
;σ
}
= Γ(σ)BLmean

[
α, β;u+ σ, v + σ

]
.

Theorem 4.26. For k, h ∈ N0, the following higher-order derivatives are valid for the EBL
[
α, β;u, v; ℓ

]
:

(I)

∂k

∂ℓk

{
EBL

[
α, β;u, v; ℓ

]}
= (−1)k EBL

[
α, β;u− k, v − k; ℓ

]
, Re(ℓ) > 0,
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(II)

∂k

∂αk

{
EBL

[
α, β;u, v; ℓ

]}

=
∞∑
r=0

1
αk(r − k)!

(ln(α))r−kEBL
[
1, β;u, v + r; ℓ

]
, Re(α) > 0, r > k,

(III)

∂k

∂βk

{
EBL

[
α, β;u, v; ℓ

]}

=
∞∑
r=0

1
βk(r − k)!

(ln(β))r−k EBL
[
α, 1;u+ r, v; ℓ

]
, Re(β) > 0, r > k,

(VI)

∂k+h

∂vh ∂uk

{
EBL

[
α, β;u, v; ℓ

]}
=

∫ 1

0
α1−w βw wu−1(1 − w)v−1

× lnk(w) lnh(1 − w) exp
(
− ℓ

w(1 − w)

)
dw,(

α, β ∈ R+ withα ̸= β, Re(u) > 0, Re(v) > 0, and Re(ℓ) > 0

)
.

Numerical representations and graphs

The numerical representations of the values of the new generalizations of the logarithmic mean
and Euler’s Beta-Logarithmic function, besides some of its exceptional cases, are given in the
form of tabulated data and graphical outcomes utilizing the MATLAB program.
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Table 1. Comparison of numerical values of _ELmean in (4.32) for different values for all α, β,
and ℓ.
N α β ELmean

ℓ = 10−3 ℓ = 7.5 × 10−4 ℓ = 5 × 10−4 ℓ = 2.5 × 10−4 ℓ = 10−8 ℓ = 0
1 0.1 0.25 0.16121 0.16176 0.16233 0.16296 0.1637 0.1637
2 0.1 0.5625 0.2633 0.26427 0.26531 0.26642 0.26777 0.26777
3 0.1 0.875 0.35094 0.35232 0.35378 0.35537 0.3573 0.3573
4 0.1 1.1875 0.4313 0.43307 0.43495 0.437 0.43949 0.43949
5 0.1 1.5 0.50698 0.50913 0.51142 0.51392 0.51698 0.51698
6 0.825 0.25 0.47407 0.47572 0.47746 0.47935 0.48161 0.48161
7 0.825 0.5625 0.67528 0.67751 0.67985 0.68238 0.68539 0.68539
8 0.825 0.875 0.83731 0.84005 0.84294 0.84605 0.84975 0.84975
9 0.825 1.1875 0.9806 0.98383 0.98723 0.9909 0.99527 0.99527

10 0.825 1.5 1.1122 1.1159 1.1198 1.1241 1.1291 1.1291
11 1.55 0.25 0.70045 0.70307 0.70585 0.70887 0.7125 0.7125
12 1.55 0.5625 0.95925 0.96254 0.96601 0.96975 0.97423 0.97423
13 1.55 0.875 1.1629 1.1668 1.1709 1.1753 1.1805 1.1805
14 1.55 1.1875 1.3407 1.3451 1.3498 1.3548 1.3607 1.3607
15 1.55 1.5 1.5025 1.5074 1.5126 1.5182 1.5249 1.5249
16 2.275 0.25 0.9006 0.90415 0.90793 0.91203 0.91701 0.91701
17 2.275 0.5625 1.2059 1.2102 1.2147 1.2196 1.2255 1.2255
18 2.275 0.875 1.4428 1.4477 1.4529 1.4585 1.4652 1.4652
19 2.275 1.1875 1.6477 1.6532 1.659 1.6653 1.6727 1.6727
20 2.275 1.5 1.8332 1.8392 1.8456 1.8525 1.8607 1.8607
21 3 0.25 1.086 1.0905 1.0952 1.1004 1.1067 1.1067
22 3 0.5625 1.432 1.4372 1.4428 1.4488 1.4561 1.4561
23 3 0.875 1.6975 1.7035 1.7097 1.7165 1.7246 1.7246
24 3 1.1875 1.9259 1.9324 1.9394 1.9468 1.9557 1.9557
25 3 1.5 2.1316 2.1387 2.1463 2.1544 2.164 2.164
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Table 2. Comparison of numerical values of EBLF in (4.29) for different values for all
α, β, u, v, and ℓ.

N α = β u v EBL
ℓ = 0 ℓ = 0.40 ℓ = 0.80

1 1 0.1 0.25 13.547 0.3861 0.058419
2 1 0.25 0.25 7.4163 0.34229 0.05213
3 1 0.4 0.25 5.8075 0.30491 0.046648
4 1 0.55 0.25 5.0329 0.27285 0.041855
5 1 0.7 0.25 4.5627 0.2452 0.037651
6 1 0.85 0.25 4.2397 0.22123 0.033953
7 1 1 0.25 4 0.20035 0.030691
8 3 0.1 0.5 33.969 0.96446 0.14647
9 3 0.25 0.5 15.732 0.84903 0.13015
10 3 0.4 0.5 11.037 0.75113 0.11597
11 3 0.55 0.5 8.8274 0.66763 0.10363
12 3 0.7 0.5 7.5174 0.59602 0.092838
13 3 0.85 0.5 6.638 0.53431 0.083383
14 3 1 0.5 6 0.48085 0.075074
15 6 0.1 0.75 62.876 1.6251 0.24658
16 6 0.25 0.75 26.657 1.421 0.21819
17 6 0.4 0.75 17.479 1.2488 0.19363
18 6 0.55 0.75 13.24 1.1028 0.17232
19 6 0.7 0.75 10.776 0.97823 0.15376
20 6 0.85 0.75 9.1543 0.87145 0.13756
21 6 1 0.75 8 0.77946 0.12337
22 9 0.1 1 90 2.0755 0.31341
23 9 0.25 1 36 1.8032 0.27622
24 9 0.4 1 22.5 1.5747 0.24415
25 9 0.55 1 16.364 1.3818 0.21642
26 9 0.7 1 12.857 1.2182 0.19236
27 9 0.85 1 10.588 1.0786 0.17142
28 9 1 1 9 0.95902 0.15315
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Figure 1. Graphical representation of ∥ ELmean − Lmean ∥∞ various values of ℓ.

Figure 2. Plots of ∥ EBL − ELmean ∥∞ with equal values of u, v, and various values of ℓ.
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Application
The extended Gauss and Kummer hypergeometric logarithmic functions of one complex variable is introduced
in this section utilizing the EEBLF in (4.29), as

Gℓ
Log

 λ1 λ2

λ3

∣∣∣α1, α2

∣∣∣z
 =

∞∑
n=0

EBL
[
α1, α2;λ2 + n, λ3 − λ2; ℓ

]
B
(
λ2, λ3 − λ2

) (λ1)n
zn

n!

(
ℓ ≥ 0; |z| < 1; Re(λ1) > 0; Re(λ3) > Re(λ2) > 0;α1, α2 ∈ R+ such thatα1 ̸= α2

)
,

(4.34)

and

Kℓ
Log

λ2

λ3

∣∣∣α1, α2

∣∣∣z
 =

∞∑
n=0

EBL
[
α1, α2;λ2 + n, λ3 + n; ℓ

]
B
(
λ2, λ3 − λ2

) zn

n!
,

(
ℓ ≥ 0; |z| < 1; Re(λ3) > Re(λ2) > 0;α1, α2 ∈ R+ such thatα1 ̸= α2

)
,

(4.35)

respectively.

Remark 4.27. According to [70, 71] the series (4.34) is seen to converge when |z| < 1, provided that λ3 ∈
C \ Z−

0 , ℓ ≥ 0 and α1, α2 ∈ R+ such that α1 ̸= α2.

Remark 4.28. For ℓ > 0 and α1, α2 ∈ R+ such that α1 ̸= α2, the series (4.35) converges for all z, provided
that λ3 ∈ C \ Z−

0 .

Additional findings on these functions are covered in [?].

4.5 Analytical properties of the two variables Jacobi matrix polynomials
Defez et al. (2004) [73] introduced the Jacobi matrix polynomials in the following definition.

Definition 4.29. Let E and F be positive stable matrices in Cn×n, then the Jacobi matrix polynomial (JMP)
P (E,F )

n (z) is defined by

P (E,F )
n (z) =

(E + I)n
n! 2F1

[
−nI,E + F + (n+ 1)I

E + I
;

1 − z

2

]
. (4.36)

These polynomials are generalizations of several families of orthogonal matrix polynomials like the Legen-
dre, Chebyshev and Gegenbauer (ultraspherical) matrix polynomials.

In the current section, we define and establish the 2−variable analogue of Jacobi matrix polynomials (2VA-
JMP) with some properties, which have been proposed on the pattern for 2-variable Gegenbauer matrix poly-
nomials by Kahmmash (2008) [72], 2-variable Laguerre matrix polynomials by Khan and Hassan (2010) [74],
2-variable Hermite generalized matrix polynomials by Subuhi et al. (2010)[75], and 2-variable Shivley’s matrix
polynomials by He et al. (2019) [76].

Definition 4.30. [77]. Let E and F be the positive stable matrices in Cn×n such that E + nI and F + nI are
invertible for all integers n ≥ 0. Then Jn(E,F, z, w) takes the following explicit form:

Jn(E,F, z, w) =

n∑
s=0

(E + I)n(F + I)n
s!(n− s)!

[(E + I)s]
−1[(F + I)n−s]

−1

× (
z −

√
w

2
)s(

z +
√
w

2
)n−s,

(4.37)

where E and F satisfy the conditions EF = FE, and

Re(z) > −1 ∀ z ∈ σ(E), Re(z) > −1 ∀ z ∈ σ(F ), (4.38)

with (E)n denotes the matrix Pochhammer symbol.

• Main Results
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Theorem 4.31. [77]. Let E,F ∈ Cn×n be positive stable matrices. The generating matrix function of
Jn(E,F, z, w) is

∞∑
ν=0

(E + F + I)ν [(E + I)ν ]
−1 Jν(E,F, z, w) t

ν = (1 − t)−(I+E+F )

× 2F1

[
1
2 (E + F + I), 1

2 (2I + E + F )

I + E
; 2t

(z −
√
w)

(1 − t)2

]
, |t| < 1, | (z −

√
w)

(1 − t)2 | < 1.

(4.39)

Theorem 4.32. [77]. LetE andF be positive stable matrices in Cd×d and | t2 (z−
√
w)| < 1 and | t2 (z+

√
w)| <

1, the following Bateman’s generating matrix function holds true:

∞∑
ν=0

Jν(E,F, z, w)[(E + I)ν ]
−1[(F + I)ν ]

−1 tν

= 0F1

[
−

E + I
;
t

2
(z −

√
w)

]
· 0F1

[
−

F + I
;
t

2
(z +

√
w)

]
.

(4.40)

Theorem 4.33. [77].. Let D,E and F be commutative matrices in Cn×n such that E and F satisfies the
spectral condition (4.38) with

∣∣∣ 1−
√
wt−R
2

∣∣∣ < 1 and
∣∣∣ 1+

√
wt−R
2

∣∣∣ < 1, the following Brafman’s generating
matrix function holds true:

∞∑
ν=0

(D)ν(E + F −D + I)ν [(E + I)ν ]
−1 [(F + I)ν ]

−1 Jν(E,F, z, w) t
ν

= 2F1

[
D,E + F −D + I

E + I
;

1 −
√
wt−R
2

]

× 2F1

[
D,E + F −D + I

F + I
;

1 +
√
wt−R
2

]
, R = (1 − 2zt+ wt2)

−1
2 .

Theorem 4.34. [77]. Let E and F be matrices in Cn×n satisfing (4.38). Then the 2VAJMP Jn(E,F, z, w)
may be expressed as

Jn(E,F, z, w) =
(z −

√
w)−E(z +

√
w)−F

2nn!

×Dn

[
(z −

√
w)E+nI(z +

√
w)F+nI

]
, D ≡ d

d(z ±
√
w)

(4.41)

Theorem 4.35. [77]. The 2VAJMP Jn(E,F, z, w) satisfies the following differential matrix recurrence rela-
tions:

2z(E + F + nI)DJn(E,F, z, w)

+
[
z(E − F )− (E + F + 2nI)

√
w
]
DJn−1(E,F, z, w)

=
√
w(E + F + nI)

[
2nJn(E,F, z, w)− (E − F )Jn−1(E,F, z, w)

]
,

(4.42)

2
√
w(E + F + nI)DJn(E,F, z, w)

+
[√

w(E − F )− (E + F + 2nI)z
]
DJn−1(E,F, z, w)

=
√
w(E + F + nI) (E + F + 2nI)Jn−1(E,F, z, w),

(4.43)

and

Ds Jn(E,F, z, w)

= 2−m (E + F + (n+ 1)I)s Jn−s(E + sI, F + sI, z, w), 0 < s ≤ n.
(4.44)

Remark 4.36. The current results enhance and expand previous findings by Rehana et al. (2017)[78].
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4.6 Hankel transforms of generalized Bessel matrix polynomials
Later on, evaluations of Hankel transform representations involving a variety of special functions and polyno-
mials have been archived by Debnath and Bhatta (2016) [79, Chapter 7]. Also, Abdalla et al. (2021) discussed
various integral transforms such as Fourier transforms [80], Laplace transforms [81], and matrix Riemann–
Liouville fractional integrals [82] associated with functions involving generalized Bessel matrix polynomials.

Motivated by previous work, we give a generalization of the scalar Hankel transform (2.10) and its inverse
into the matrix framework.

Definition 4.37. [83].(Matrix Hankel Transforms) Let S be a positive sable matrix in Cn×n and let Φ(u) be a
function defined for u ≥ 0. The Hankel transform involving Bessel matrix function as kernel of Φ(u) is defined
as

ΞS(v) ≡ HS{Φ(u); v} ≡
∫ ∞

0
Φ(u)

√
uv JS(uv) du, (4.45)

where v > 0 and JS(uv) is the Bessel matrix function of the first kind defined by Jódar et al. (1994) [85].

If β̃(S) > 1/2, Hankel’s repeated integral immediately gives the inversion formula

Φ(u) = H−1
S {ΞS(v);u} ≡

∫ ∞

0
ΞS(v)

√
uv JS(uv) dv. (4.46)

• Main Results

Now, we introduce the evaluation of the Hankel matrix transforms with products of certain elementary functions
and the generalized Bessel matrix polynomials Bn(u;M,N)

[86].Bn(u;M,N) =

n∑
m=0

(−1)m

m!
(−nI)m(M + (n− 1)I)m(uN−1)m, (4.47)

where M and N are commuting matrices in Cn×n such that N is an invertible matrix.

Theorem 4.38. [86]. Let S and N be commuting matrices in Cn×n. If

Φ(u) = uS+(2n+ 1
2 )I e−σu2

Bn(N ; (1 − 2n)I − S, u2), (4.48)

then, we have

ΞS(v) = (2σ)−(S+(2n+1)I) vS+(2n+ 1
2 )I e

−v2
4σ

×Bn(4σ(I − σN); (1 − 2n)I − S,−v2),

(4.49)

where S is a positive stable matrix in Cn×n, β̃(S + nI) > −1, v > 0 and σ ∈ C such that Re(σ) > 0.

Theorem 4.39. [86]. Let S, P and M be positive stable and commuting matrices in Cn×n. When

Φ(u) = uP+ 1
2 I e−σu2

Bn(1;M,σu2), (4.50)

then, we have

ΞS(v) = (−1)n σ−( 1
2 (P+S)+I) (2)−(S+I) vS+ 1

2 I

×Γ(
1
2
(P + S)) (M +

1
2
(P + S))n Γ

−1(S + I) [(−(
1
2
(P + S)))n]

−1

× 2F2

 (1 − n)I + 1
2 (P + S), nI +M + 1

2 (P + S),

S + I,M + 1
2 (P + S)

;− v2

4σ

 ,
(4.51)

where β̃(P ) > − 3
2 , v > 0 and σ ∈ C such that Re(σ) > 0.

Theorem 4.40. [86]. Let Bn(u;M,N) be given in (4.47). If

Φ(u) = Bn(σu
2;M,N), (4.52)
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then, we have

ΞS(v) =2
1
2 v−1

Γ(
1
2
S +

3
4
I)Γ

−1(
1
2
S +

1
4
I)

× 4F0


−nI,M + (n− 1)I, 1

2S + 3
4I,

−1
2 S + 3

4I,

−

; 4σ(v2N)−1

 ,
(4.53)

where β̃(S) > −1/2 and v > 0.

Theorem 4.41. [86]. Let Bn(u;M,N) be given in (4.47). When

Φ(u) = loguBn(λu
2;M,N), (4.54)

then, we have

ΞS(v) =
1

v
√

2
Γ(

1
2
S + 3/4I) Γ

−1(
1
2
S + 1/4I)

×
n∑

m=0

(−nI)m (M + (n− 1)I)m

× (
1
2
S + 3/4I)m (

−1
2
S + 3/4I)m

(4λ(Nv2)−1)m

m!

×

{
ψ(

1
2
S + (3/4 +m)I) + ψ(

1
2
S + (1/4 −m)I)− log(v2/4)

}
(4.55)

where M,N and S are commuting matrices in Cn×n such that β̃(S) > −3/2, ψ(S) is the digamma matrix
function defined by

ψ(S) = Γ
−1(S)Γ′(S),

where Γ
−1(S) and Γ

′(S) are reciprocal and derivative of the Gamma matrix function, respectively and v >
0, λ > 0.

Remark 4.42. Abdalla et al. (2021)[56] work into the Hankel matrix transform revealed further features and
applications such as the convolution property and solve of partial differential equations of second order.
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4.7 Applications.
Nowadays, an interesting application of special functions in allied sciences is solving generalized fractional
kinetic equations by using various integral transforms, including the recent papers by Agarwal et al. (2018)
[80], Singh et al. (2021) [85], Abdalla and Akel (2022) [83], Hidan et al. (2022) [89], Chand et al. (2024) [88],
and Alqarni (2024) [89]. Here, we will show two applications to fractional kinetic equations.

Application of Mellin integral transform in solving generalized kinetic equations involving
Hadamard fractional operators
Here, we introduce the solution to generalized fractional kinetic equations involving Hadamard fractional inte-
gral and the generalized extended k-Hurwitz-Lerch ζ-matrix functions.

The generalized extended k-Hurwitz-Lerch ζ− matrix function is defined by

Definition 4.43. [82]. Let T, D, E and F be positive stable matrices in Cm×m, such that T + ℓI and F + ℓI
are invertible for all ℓ ∈ N0, σ ∈ R+

0 , k ∈ R+, and α ∈ C \ Z−
0 . Then, for |w| < 1, the generalized extended

k-Hurwitz-Lerch ζ− matrix function is defined by:

2Θ
T ;k,α;σ
1

[
D,E

F
;w

]
=

∞∑
n=0

(n+ α)−T (D;σ)n,k (E)n,k [(F )n,k]
−1 w

n

n!
, (4.56)

where (D;σ)n,k is the generalized k-Pochhammer matrix symbols defined as

(D;σ)n,k =



Γ
σ
k(D + nI)Γ

−1
k (D), (µ̃(D) > 0, σ, k ∈ R+, n ∈ N)

(D)n,k, (σ = 0, k ∈ R+, n ∈ N)

I, (n = 0, σ = 0, k = 1)

(4.57)

Lemma 4.44. [83]. The Mellin transform of the extended k-Hurwitz-Lerch ζ− matrix function is given by

M

{
2Θ

T ;k,α;σ
1

[
D,E

F
;w

]
: σ → δ

}

= Γk(δ) (D)δ,k 2Θ
T ;k,α;σ
1

[
D + δI, E

F
;w

]
,

(4.58)

where ℜ(δ) > 0 and µ̃(D + δI) > 0 when σ = 0 and k = 1.

where ℜ(ε) > 0 and µ̃(D + εI) > 0 when ρ = 0 and k = 1.

(HI
γf) (t) =

1
Γ(γ)

∫ ∞

t

(
log

τ

t

)γ−1 f(τ)

τ
dτ, t > 0, Re(γ) > 0.

Lemma 4.45. [83]. If Re(γ) > 0, τ ∈ C, and the Mellin transform M(f)(τ) exists for a function f , then the
following hold true

M (HI
γ
+f) (τ) = (−τ)−γ (Mf) (τ), Re(τ) < 0,

and
M

(
HI

γ
−f

)
(τ) = (τ)−γ (Mf) (τ), Re(τ) > 0.

where HI
γ
+f and HI

γ
−f are the Hadamard fractional integral operators of order γ ∈ C defined in (1.12).

• Main Results

Theorem 4.46. [82]. Let Tµ, Dµ, Eµ, Fµ and C be positive stable matrices in Cm×m, such that Tµ + ℓI and
Fµ+ℓI are invertible for all µ ∈ N, ℓ ∈ N0, δ, σ ∈ R+

0 , d, k, ξ ∈ R+, and αµ ∈ C\Z−
0 . Then, for γ ∈ C\Z−

0 ,
t ∈ [0, ξ] and 2Θ

Tµ;kµ,αµ;σ
1 is generalized of (2.6), the generalized fractional kinetic matrix equation

N(t)I −N0t
δ−1

n∏
µ=1

2Θ
Tµ ;kµ,αµ;σ
1

[
Dµ, Eµ

Fµ
; dγtγ

]
= −Cγ

HI
γ
t N(t) (4.59)
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is solvable. The solution to (4.59) is given by

N(t)I =N0 ξ
δ−1 log(t)

n∏
µ=1

∞∑
s=0

(s+ αµ)
−Tµ(Dµ;σ)n,kµ(Eµ)n,kµ [(Fµ)n,kµ ]

−1

×
(
dγsξγs

s!

)µ ∞∑
r=0

∞∑
ℓ=0

[
−
(

log tC
)γ]r [

log t−(γµs+δ−1)
]ℓ

Γ[1 − (γr + ℓ+ 2)].

(4.60)

A number of exceptional instances of this result are provided in [82].

Application of pathway-type integral transform in solving fractional λ−kinetic equations
involving the generalized degenerate hypergeometric functions

In the current section, we propose a new solution to fractional λ−kinetic equations based on generalized de-
generate hypergeometric functions (GDHFs), which was further supported by graphical presentations derived
through pathway-type transform approach methodologies.

Recently, Yağci and Şahin [85] introduced the degenerate Pochhammer symbol using the degenerate Gamma
function as follows:

(ϖ;λ)ℓ =
Γλ(ϖ + ℓ)

Γ(ϖ)

=
1

Γ(ϖ)

∫ ∞

0
(1 + λw)−

1
λwϖ+ℓ−1 dw, λ > Re(ϖ + ℓ) > 0,

(4.61)

where λ ∈ (0, 1) and limλ→0 (ϖ;λ)ℓ = (ϖ)ℓ, is the standard Pochhammer symbol. By using (4.61), the
GDHF is defined in [?] as

mDHλ
n(w) = mDHλ

n

 (γ1;λ) · · · γm

ϑ1 · · ·ϑn

;w

 =

∞∑
r=0

(γ1;λ)r · · · (γm)r
(ϑ1)r · · · (ϑn)r

.
wr

r!
, (4.62)

where w, γi ∈ C for i = 1, 2, 3, ...,m, and ϑj ∈ C \ Z−
0 for j = 1, 2, 3, ..., n.

• Main Results

Theorem 4.47. [89]. Let α, β, σ, ℘ ∈ R+, w ∈ C, λ ∈ (0, 1), γi ∈ C for i = 1, 2, 3, ...,m and ϑj ∈ C \ Z−
0

for j = 1, 2, 3, ..., n. The solution of

K(w)−K0 mDHλ
n(σ

βwβ) = −℘α
0D−α

w K(w), (4.63)

is

Kα
λ(w) = K0

∞∑
r=0

(γ1;λ)r · · · (γm)r
(ϑ1)r · · · (ϑn)r

Γ(βr + 1)
r!

σβr wrβ Eα,βr+1(−℘α wα), (4.64)

where Eθ,ϑ(η) is the generalized Mittag-Leffler function defined as

Eθ,ϑ(η) =

∞∑
ı=0

ηı

Γ(ıθ + ϑ)
(θ, ϑ ∈ C, Re(θ) > 0, Re(ϑ) > 0). (4.65)

A variety of special cases of this result are given in [89].



NEW ASPECTS OF CERTAIN SPECIAL FUNCTIONS 143

(1A)

(1B)

(1C)

Figure 3. Solutions of (4.64) for Kα
λ(w) with different values of λ in (1A˘1C).
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(2A)

(2B)

(2C)

Figure 4. Solutions of (4.64) for Kα
λ(w) with different values of α in (2A-2C).

5 Concluding Remarks and Future Works
The applications of special functions and fractional analysis theory are not restricted to the issues listed above.
Recently, the study of the extension of several special functions and polynomials linked with fractional operators
has gained importance. Thus, the researchers have derived several generalizations and developments of special
functions and fractional calculus through various studies. From this perspective, in this review article, we offer
a variety of results from these investigations.

As future work, we are, joining with others, planning to:
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• Extend the results given in the above sections to quaternionic and Clifford analysis.
• Investigate the numerical methods for special matrix functions related to fractional calculus.
• The applications of analytical properties of generalized special functions of fractional calculus across

different fields are studied.
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