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Abstract: In this paper, we delve into the intricate challenge of extending solutions to the
ill-posed Cauchy problem linked to matrix factorizations of the Helmholtz equation, set within
both bounded and unbounded multidimensional domains. We presuppose the existence of a
solution that is continuously differentiable throughout the entire closed domain, anchored by the
specified Cauchy data. Given these conditions, we derive explicit formulas for the extension
of this solution alongside a robust regularization method. Our proposed solutions encompass
continuous approximations that faithfully conform to a predetermined error measure within the
uniform metric, effectively replacing the original Cauchy data. Furthermore, this study offers
an estimation of the stability of the solution to the Cauchy problem, framed within a classical
context. Through this exploration, we not only aim to advance the mathematical understanding
of the Helmholtz equation but also to illuminate pathways for practical applications wherein
such extended solutions can be effectively utilized.
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1 Introduction

The exploration of regularizing operators is crucial in the context of the Cauchy problem for
the Helmholtz equation, as it facilitates the stabilization of solutions that are otherwise sensi-
tive to perturbations in data. Regularization techniques, by incorporating prior knowledge or
additional constraints, can effectively mitigate the inherent instability often present in ill-posed
problems. Notably, the Carleman estimate serves as a powerful tool in deriving bounds for solu-
tions and establishing the existence of regularizing operators. These estimates not only enhance
our understanding of solution behavior but also lead to effective numerical schemes for solv-
ing complex inverse problems. In recent years, advancements in computational algorithms have
significantly transformed our approach to these challenges. The iterative methods rooted in the
Kozlov-Maz’ya-Fomin framework have shown remarkable success in practical applications, pro-
viding robust strategies for regularization that improve convergence rates. Leveraging such algo-
rithms enables practitioners to obtain approximate solutions that adhere closely to the underlying
physical phenomena, thereby enhancing predictive accuracy. Furthermore, interdisciplinary col-
laborations draw upon insights from applied mathematics and computational physics, promoting
innovative methodologies tailored to various scientific domains. As the frontiers of research in
matrix factorizations continue to expand, understanding the interplay between theoretical con-
structs and practical applications remains essential for tackling the complexities associated with
the Helmholtz equation and its myriad implications across disciplines. The complexity of the
Cauchy problem for elliptic equations arises from the interplay between the uniqueness of so-
lutions and the characteristics of the data defined on an incomplete boundary. In contrast to
Fredholm equations, where one can leverage well-established methods from functional analy-
sis, the elliptic setting necessitates a more nuanced approach owing to the non-closed nature of
the dense set of solvable data. This results in significant challenges for proving existence and
regularity, leading to the necessity for innovative techniques and advanced tools that can oper-
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ate within this less structured framework. Furthermore, the stability of solutions relies heavily
on the geometric and analytical properties of the underlying domain and the operators involved.
The works of Aizenberg, Kytmanov, and Tarkhanov provided critical advancements, establishing
foundational results that explore stability conditions and perturbation theories specific to elliptic
equations. Their contributions laid the groundwork for subsequent investigations into the ro-
bustness of solutions amid varying data configurations, enhancing the theoretical understanding
of inverse problems. In particular, the incorporation of compactness into the solution space, as
suggested by Tikhonov, aids in addressing the instability that arises from non-closed data sets.
This restriction allows researchers to apply compactness arguments to derive well-posedness in
particular scenarios, illuminating pathways for resolving the broader challenges posed by the
elliptic Cauchy problem. The interplay of uniqueness, stability, and data density continues to be
an area ripe for exploration, promising rich avenues for future research (see, for instance [1, 18]).

The regularization techniques employed in the context of hyperbolic equations typically in-
volve the introduction of additional parameters or constraints that allow for more tractable so-
lutions. These techniques can be particularly significant in problems where classical solutions
may become ill-defined or exhibit discontinuities. For instance, using smoothing functions or
convolution operators can lead to well-defined approximations that effectively capture the un-
derlying dynamics of the system, allowing one to analyze the behavior of solutions even in
challenging scenarios. Moreover, the adaptability of regularization formulas is a vital aspect of
their utility; they can be calibrated according to the specifics of the initial conditions or other in-
fluencing factors. This flexibility enhances their application across various domains, from fluid
dynamics to wave propagation, encouraging researchers to devise customized approaches tai-
lored to the peculiarities of their particular problems. As a result, the theoretical groundwork
laid in exploring Cauchy problems becomes invaluable for practitioners seeking reliable com-
putational techniques. In essence, the exploration of regularization formulas transcends mere
theoretical investigation, fostering synergies between mathematical theory and practical appli-
cation. With ongoing advancements in computational methods and numerical algorithms, the
prospect of harnessing these regularization strategies in real-world scenarios remains promising,
offering a pathway to overcoming challenges inherent in the absence of classical solutions.

This issue pertains to ill-posed problems, indicating a degree of instability. It is acknowl-
edged that the Cauchy problem for elliptic equations exhibits instability in response to minor
alterations in the data, which signifies its incorrectness (refer to Hadamard, for example, see [3],
p. 39). There exists a substantial body of literature on this topic (see, for instance, [2]-[8]). In
his work, N.N. Tarkhanov [15] introduced a criterion for determining the solvability of a broader
category of boundary value problems concerning elliptic systems. In scenarios involving unsta-
ble problems, the operator’s image is not closed. Consequently, the conditions for solvability
cannot be expressed solely in terms of continuous linear functionals. Thus, within the Cauchy
problem for elliptic equations that utilize data from a portion of the boundary, solutions typically
exist uniquely. This problem is valid for a set of data that is dense everywhere, though this set
is not closed. As a result, the theoretical framework for the solvability of these problems is far
more complex and profound than that related to Fredholm equations. Initial findings in this area
emerged in the mid-1980s through the contributions of L.A. Aizenberg, A.M. Kytmanov, and
N.N. Tarkhanov (see, for example, [16]). The distinctiveness of the solution is derived from
Holmgren’s general theorem (refer to [7]), while the problem’s conditional stability is estab-
lished through the research of A.N. Tikhonov (see [1]), provided we limit the set of potential
solutions to a compact space.

In pursuit of understanding these complexities, researchers have employed diverse mathemat-
ical tools and theoretical frameworks. The exploration of operator theory, particularly within the
context of unbounded operators, plays a pivotal role. By identifying appropriate domains, one
can establish the continuity and boundedness critical to yielding solvable mathematical models.
Moreover, advancements in functional analysis have fostered significant developments, particu-
larly in the realm of spectral theory, which offers insights into the behavior of solutions under
various conditions and constraints. The interplay between regularization techniques and nu-
merical methods has also garnered attention. Techniques such as Tikhonov regularization and
Landweber iteration provide robust avenues for approximating solutions to ill-posed problems.
By refining these approximations, researchers are now capable of tackling problems that previ-
ously appeared intractable. The Cauchy problem related to the Helmholtz equation, for example,
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exemplifies how these approaches can offer potential solutions that adhere to physical principles
while addressing mathematical shortcomings. Furthermore, boundary value problems present a
fertile ground for investigation. The complexities associated with non-standard boundary con-
ditions often necessitate innovative computational strategies. Recent studies have highlighted
the importance of adaptive meshes and iterative solvers, demonstrating their effectiveness in en-
hancing the accuracy of solutions across diverse geometries and conditions. As the frontier of
mathematical physics continues to expand, collaboration across disciplines remains crucial in
deciphering the myriad challenges that lie ahead.

The challenge of reconstructing solutions in this context lies in the inherent limitations im-
posed by the boundary conditions. When dealing with first-order elliptic systems, the boundary
data often provides insufficient information for a unique solution across the entire domain. As a
result, the inverse problem becomes crucial, where one seeks to determine the underlying behav-
ior of the solution based on partial or indirect information. This scenario highlights the signifi-
cance of various mathematical methods, such as operator theory and functional analysis, which
can be employed to address the gaps in data and derive approximations of the desired solutions.
Further complicating the situation is the nature of the Helmholtz operator itself. Its factorization
involves understanding the interplay between differential operators and the associated bound-
ary value problems. In many cases, the factorization leads to a simplification of the underlying
equations, but it also raises new questions about the well-posedness and stability of the resulting
solution. Researchers have explored various techniques to ensure that the solutions remain robust
despite the restricted boundary conditions, often involving regularization methods and stability
analysis. Moreover, recent advancements in the field of numerical methods have provided new
avenues for tackling these reconstructive challenges. Computational approaches, particularly
those based on iterative methods and state-of-the-art algorithms, have shown promise in recov-
ering solutions from incomplete data. These methodologies not only enhance our understanding
of elliptic systems but also expand their applicability across various scientific domains, from en-
gineering to physics, where such systems are prevalent. Consequently, the ongoing investigation
into these problems stands at the forefront of modern mathematical research, reflecting both their
theoretical significance and practical implications.

The Cauchy problem associated with many elliptic equations has a singular solution, indicat-
ing that this problem can be addressed for a data set that is dense throughout the space, although
this data set is not regarded as closed. Consequently, the study of the solvability of such prob-
lems is quite intricate. References [10]-[21] provide an in-depth exploration of the characteristics
and attributes of these issues. In works [22]-[32], approximate solutions to the ill-posed Cauchy
problem are analyzed through various factorizations of the Helmholtz operator. Building upon
these findings, explicit regularized solutions for the Cauchy problem have been derived for dif-
ferent factorizations associated with the Helmholtz operator, as discussed in [33]-[49].

Let Rm be a m−dimensional real Euclidean space,

x = (x1, . . . , xm) ∈ Rm, y = (y1, . . . , ym) ∈ Rm,

x′ = (x1, . . . , xm−1) ∈ Rm−1, y′ = (y1, . . . , ym−1) ∈ Rm−1,

We introduce the following notation:

r = |y − x| , α = |y′ − x′| , w = i
√
u2 + α2 + ym, w0 = iα+ ym, u ≥ 0, s = α2,

w = iτ
√
u2 + α2 + β, w0 = iτα+ β, β = τym, τ = tg

π

2ρ
, ρ > 1,

Gρ = {y : |y′| < τym, ym > 0}, ∂Gρ = {y : |y′| = τym, ym > 0},

∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂xm

)T

,
∂

∂x
→ ξT , ξT =

 ξ1

...

ξm

−transposed vector ξ,

U(x) = (U1(x), . . . , Un(x))
T , u0 = (1, . . . , 1) ∈ Rn, n = 2m, m ≥ 2,
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E(z) =

∥∥∥∥∥∥∥∥∥∥
z1 0 ... 0
0 z2 ... 0

... ...
. . . ...

0 0 ... zn

∥∥∥∥∥∥∥∥∥∥
−diagonal matrix, z = (z1, . . . , zn) ∈ Rn.

Let D(ξT ) be a (n × n)−dimensional matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following condition is
satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(ξT ), λ is a real number.
We will consider the following system of linear first order partial differential equations

D

(
∂

∂x

)
U(x) = 0, (1.1)

where D
(
∂

∂x

)
is the matrix of first-order differential operators.

Gρ ⊂ Rm be a bounded simply-connected domain, the boundary of which consists of the
surface of the cone ∂Gρ, and a smooth piece of the surface S, lying in the cone Gρ, i.e., ∂Gρ =
S
⋃
T, T = ∂Gρ\S.

Let (0, . . . , xm) ∈ Gρ, xm > 0.
We denote by A(Gρ) the class of vector functions in the domain Gρ continuous on Gρ =

Gρ

⋃
∂Gρ and satisfying system (1.1).

Problem 1. Suppose U(y) ∈ A(Gρ) and

U(y)|S = f(y), y ∈ S. (1.2)

Here, f(y) a given continuous vector-function on S. It is required to restore the vector func-
tion U(y) in the domainGρ, based on it’s values f(y) on S.

If U(y) ∈ A(Gρ), then the following integral formula of Cauchy type is valid

U(x) =

∫
∂Gρ

N(y, x;λ)U(y)dsy, x ∈ Gρ. (1.3)

where

N(y, x;λ) =
(
E(φm(λr)u0)D∗

(
∂

∂x

))
D(tT ).

Here t = (t1, . . . , tm)−is the unit exterior normal, drawn at a point y, the surface ∂Gρ,
φm(λr) is the fundamental solution of the Helmholtz equation in Rm, where φm(λr) defined by
the following formula:

φm(λr) = Pmλ
(m−2)/2

H
(1)
(m−2)/2(λr)

r(m−2)/2 ,

Pm =
1

2i(2π)(m−2)/2 .
(1.4)

Here H(1)
(m−2)/2(λr) is the Hankel function of the first kind of (m− 2)

/
2−th order (see, for

instance [9]).
We denote by K(w) is an entire function taking real values for real w,(w = u+ iv, u, v−real

numbers) and satisfying the following conditions:

K(u) ̸= 0, sup
v≥1

∣∣vpK(p)(w)
∣∣ = B(u, p) <∞,

−∞ < u <∞, p = 0, 1, ...,m.
(1.5)

We define the function Φ(y, x;λ) at y ̸= x by the following equalities
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Φ(y, x;λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫
0

Im
[
K(w)

w − xm

]
uI0(λu)√
u2 + α2

du,

m = 2k, k ≥ 1, cm = (−1)k−1(k − 1)!(m− 2)ωm,

(1.6)

Φ(y, x;λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫
0

Im
[
K(w)

w − xm

]
cos(λu)√
u2 + α2

du,

m = 2k + 1, k ≥ 1, cm = (−1)k2−k(2k − 1)!(m− 2)πωm.

(1.7)

Where I0(λu) = J0(iλu)−is the Bessel function of the first kind of zero order, ωm−area of
a unit sphere in space Rm.

In the formula (1.6) and (1.7), choosing

K(w) = Eρ(σ
1/ρw), K(xm) = Eρ(σ

1/ργ), γ = τxm, σ > 0. (1.8)

we get

Φσ(y, x;λ) =
E−1

ρ (σ1/ργ)
cm

∂k−1

∂sk−1

∞∫
0

Im
[
Eρ(σ1/ρw)
w − xm

]
uI0(λu)√
u2 + α2

du,

m = 2k, k ≥ 1,

(1.9)

Φσ(y, x;λ) =
E−1

ρ (σ1/ργ)
cm

∂k−1

∂sk−1

∞∫
0

Im
[
Eρ(σ1/ρw)
w − xm

]
cos(λu)√
u2 + α2

du,

m = 2k + 1, k ≥ 1.

(1.10)

Here Eρ(σ1/ρw) is the entire Mittag-Leffler function (see [7]).
The formula (1.3) is true if instead φm(λr) of substituting the function

Φσ(y, x;λ) = φm(λr) + gσ(y, x;λ). (1.11)

Then the integral formula (1.3) has the form:

U(x) =

∫
∂Gρ

Nσ(y, x;λ)U(y)dsy, x ∈ Gρ. (1.12)

where

Nσ(y, x;λ) =
(
E(Φσ(y, x;λ)u0)D∗

(
∂

∂x

))
D(tT )

2 Solution of the Cauchy problem for matrix factorizations of the Helmholtz
equation in a multidimensional bounded domain

The Cauchy problem for matrix factorizations of the Helmholtz equation presents a complex
challenge in applied mathematics and computational physics, particularly within the context of
multidimensional bounded domains. This problem involves determining the unknown parameter
fields of the equation from incomplete or noisy measurements, a situation often encountered in
fields such as geophysics and biomedical imaging. The Helmholtz equation itself, characterized
by the wave nature of solutions, necessitates careful consideration of boundary conditions and
matrix structures that arise in its factorization approaches. Exploring the interplay between lin-
ear algebra and numerical analysis is essential for understanding the intricate behavior of the
solutions to the Helmholtz equation. Recent advancements in computational power and algo-
rithms have further enhanced our ability to simulate and solve these types of problems effec-
tively, paving the way for innovative applications across various scientific domains.
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Theorem 2.1. Let U(y) ∈ A(Gρ) it satisfy the inequality

|U(y)| ≤M, y ∈ T = ∂Gρ\S, x ∈ Gρ. (2.1)

If

Uσ(x) =

∫
S

Nσ(y, x;λ)U(y)dsy, x ∈ Gρ, (2.2)

then the following estimates are true:
at m = 2k, k ≥ 1:

|U(x)− Uσ(x)| ≤ Cρ(λ, x)Mσk exp(−σγρ), σ > 1, x ∈ Gρ, (2.3)

∣∣∣∣∂U(x)∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)Mσk exp(−σγρ), σ > 1, x ∈ Gρ, j = 1,m, (2.4)

at m = 2k + 1, k ≥ 1:

|U(x)− Uσ(x)| ≤ Cρ(x)Mσk+1 exp(−σγρ), σ > 1, x ∈ Gρ, (2.5)

∣∣∣∣∂U(x)∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ Cρ(x)Mσk+1 exp(−σγρ), σ > 1, x ∈ Gρ, j = 1,m. (2.6)

Here and below functions bounded on compact subsets of the domain Gρ, we denote by
Cρ(λ, x) and Cρ(x).

Corollary 2.2. For each x ∈ Gρ the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)

∂xj
=
∂U(x)

∂xj
, j = 1,m.

We denote by Gε the set

Gε = {(x1, . . . , xm) ∈ Gρ, a > xm ≥ ε, a = max
T

ψ(x′), 0 < ε < a}.

Here, at m = 2, ψ(x1)−is a surface, and at m > 2, ψ(x′)−is a surface. It is easy to see
that the set Gε ⊂ Gρ is compact.

Corollary 2.3. If x ∈ Gε , then the families of functions {Uσ(x)} and
{
∂Uσ(x)

∂xj

}
converge

uniformly for σ → ∞, i.e.:

Uσ(x)⇒U(x),
∂Uσ(x)

∂xj
⇒
∂U(x)

∂xj
, j = 1,m.

Suppose that the curve S is given by the equation

ym = ψ(y′), y′ ∈ Rm−1

where ψ(y′) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y′), b = max
T

√
1 + ψ′2(y′).
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Theorem 2.4. Let U(y) ∈ A(Gρ) satisfy condition (1.9), and on a smooth curve S the inequality

|U(y)| ≤ δ, 0 < δ < M, y ∈ S. (2.7)

Then the following estimates is true
at m = 2k, k ≥ 1:

|U(x)| ≤ Cρ(λ, x)σ
kM1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, (2.8)

∣∣∣∣∂U(x)∂xj

∣∣∣∣ ≤ Cρ(λ, x)σ
kM1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, j = 1,m. (2.9)

at m = 2k + 1, k ≥ 1:

|U(x)| ≤ Cρ(x)σ
k+1M1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, (2.10)

∣∣∣∣∂U(x)∂xj

∣∣∣∣ ≤ Cρ(x)σ
k+1M1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, j = 1,m. (2.11)

Here is aρ = max
y∈S

Rewρ
0 .

Let U(y) ∈ A(Gρ) and instead of functions U(y) on S with its approximations
fδ(y)respectively, with an error 0 < δ < M ,

max
S

|U(y)− fδ(y)| ≤ δ. (2.12)

We put

Uσ(δ)(x) =

∫
S

Nσ(y, x;λ)fσ(y)dsy, x ∈ Gρ. (2.13)

Theorem 2.5. Let U(y) ∈ A(Gρ) on the part of the plane ym = 0 satisfy condition (1.9)
Then the following estimates is true
at m = 2k, k ≥ 1:∣∣U(x)− Uσ(δ)(x)

∣∣ ≤ Cρ(λ, x)σ
kM1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, (2.14)

∣∣∣∣∂U(x)∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)σ
kM1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, j = 1,m. (2.15)

at m = 2k + 1, k ≥ 1:∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(x)σ

k+1M1−( γ
a )

ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, (2.16)

∣∣∣∣∂U(x)∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ Cρ(x)σ
k+1M1−( γ

a )
ρ

δ(
γ
a )

ρ

, σ > 1, x ∈ Gρ, j = 1,m. (2.17)

Corollary 2.6. For each x ∈ Gρ, the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)

∂xj
=
∂U(x)

∂xj
, j = 1,m.

Corollary 2.7. If x ∈ Gε, then the families of functions {Uσ(δ)(x)} and
{
∂Uσ(δ)(x)

∂xj

}
converge

uniformly for δ → 0, i.e.:

Uσ(δ)(x)⇒U(x),
∂Uσ(δ)(x)

∂xj
⇒
∂U(x)

∂xj
, j = 1,m.
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In this paper, we have found an approximate solution to the problem based on the properties
of the Carleman matrix. If the Carleman matrix is known, then it is no longer difficult to find a
regularized solution in explicit form. In this case, we have that the solution to the problem exists
and is continuously differentiable in a closed region with exactly specified Cauchy data.

We note that for solving applicable problems, the approximate values of U(x) and
∂U(x)

∂xj
, x ∈ Gρ, j=1,m should be found.

As a result, we constructed a family of vector functions U(x, fδ) =Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=
∂Uσ(δ)(x)

∂xj
, (j=1,m), which depend on the parameter σ. It is additionally proved

that under specific conditions and a special choice of the parameter σ=σ(δ), at δ → 0, the family

Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
are convergent to a solution U(x) and its derivative

∂U(x)

∂xj
, x ∈ Gρ at

point x ∈ Gρ. Here we will call Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
the regularized solution of the problems

(1.1) and (1.2).

3 Solution of the Cauchy problem for matrix factorizations of the Helmholtz
equation in a bounded domain Rm

In addressing this, matrix factorization techniques become instrumental. These methods leverage
properties of linear algebra to decompose the matrix representation of the differential operator
associated with the Helmholtz equation. By transforming the problem into a manageable format,
one can employ regularization strategies to mitigate the sensitivity to noise and improve numeri-
cal stability. The use of singular value decomposition (SVD) and other factorization approaches
enables the reconstruction of the wave field from insufficient or noisy boundary data. Further-
more, applying appropriate boundary conditions and leveraging variational principles leads to
results that are both theoretically robust and practically relevant. The interplay between analyt-
ical techniques and numerical simulations is crucial in understanding the behavior of solutions
in various geometries and for different boundary conditions. Thus, the Cauchy problem for ma-
trix factorizations of the Helmholtz equation remains an active area of research with profound
implications across scientific disciplines.

G ⊂ Rm is a bounded simply-connected domain with piecewise smooth boundary consisting
of the plane T : ym= 0 and a smooth surface S lying in the half-space ym> 0, i.e., ∂G=S∪T, T =
∂G\S.

We denote byA(G) the class of vector functions in the domainG continuous onG = G
⋃
∂G

and satisfying system (1.1).
Problem 2. Suppose U(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S. (3.1)

Here, f(y) a given continuous vector-function on S. It is required to restore the vector func-
tion U(y) in the domainG, based on it’s values f(y) on S.

If U(y) ∈ A(G), then the following integral formula of Cauchy type is valid

U(x) =

∫
∂G

N(y, x;λ)U(y)dsy, x ∈ G. (3.2)

where

N(y, x;λ) =
(
E(φm(λr)u0)D∗

(
∂

∂x

))
D(tT ).

Here t = (t1, . . . , tm)−is the unit exterior normal, drawn at a point y, the surface ∂G, φm(λr)
is the fundamental solution of the Helmholtz equation in Rm, where φm(λr) defined by the
formula (1.4).

We define the function Φ(y, x;λ) at y ̸= x by the equalities (1.6) and (1.7).
In the formula (1.6) and (1.7), choosing
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K(w) = exp(σw), K(xm) = exp(σxm), σ > 0. (3.3)

we get

Φσ(y, x;λ) =
e−σxm

cm

∂k−1

∂sk−1

∞∫
0

Im
[

exp(σw)
w − xm

]
uI0(λu)√
u2 + α2

du,

m = 2k, k ≥ 1,

(3.4)

Φσ(y, x;λ) =
e−σxm

cm

∂k−1

∂sk−1

∞∫
0

Im
[

exp(σw)
w − xm

]
cos(λu)√
u2 + α2

du,

m = 2k + 1, k ≥ 1.

(3.5)

The formula (3.2) is true if instead φm(λr) of substituting the function

Φσ(y, x;λ) = φm(λr) + gσ(y, x;λ). (3.6)

Then the integral formula (3.2) has the form:

U(x) =

∫
∂G

Nσ(y, x;λ)U(y)dsy, x ∈ G. (3.7)

where
Nσ(y, x;λ) =

(
E(Φσ(y, x;λ)u0)D∗

(
∂

∂x

))
D(tT )

Theorem 3.1. Let U(y) ∈ A(G) it satisfy the inequality

|U(y)| ≤M, y ∈ T = ∂G\S, x ∈ G. (3.8)

If

Uσ(x) =

∫
S

Nσ(y, x;λ)U(y)dsy, x ∈ G, (3.9)

then the following estimates are true
at m = 2k, k ≥ 1:

|U(x)− Uσ(x)| ≤ C(λ, x)Mσke−σxm , σ > 1, x ∈ G, (3.10)∣∣∣∣∂U(x)∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ C(λ, x)Mσke−σxm , σ > 1, x ∈ G, j = 1,m, (3.11)

at m = 2k + 1, k ≥ 1:

|U(x)− Uσ(x)| ≤ C(x)Mσk+1e−σxm , σ > 1, x ∈ G, (3.12)∣∣∣∣∂U(x)∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ C(x)Mσk+1e−σxm , σ > 1, x ∈ G, j = 1,m. (3.13)

Here and below functions bounded on compact subsets of the domain G, we denote by
C(λ, x) and C(x).

Corollary 3.2. For each x ∈ G, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)

∂xj
=
∂U(x)

∂xj
, j = 1,m.

We denote by Gε the set

Gε = {(x1, . . . , xm) ∈ G, a > xm ≥ ε, a = max
T

ψ(x′), 0 < ε < a}.

Here, at m = 2, ψ(x1)−is a curve, and at m > 2, ψ(x′)−is a surface. It is easy to see that
the set Gε ⊂ G is compact.
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Corollary 3.3. If x ∈ Gε, then the families of functions {Uσ(x)} and
{
∂Uσ(x)

∂xj

}
converge

uniformly for σ → ∞, i.e.:

Uσ(x)⇒U(x),
∂Uσ(x)

∂xj
⇒
∂U(x)

∂xj
, j = 1,m.

Suppose that the curve S is given by the equation

ym = ψ(y′), y′ ∈ Rm−1

where ψ(y′) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y′), b = max
T

√
1 + ψ′2(y′).

Theorem 3.4. Let U(y) ∈ A(G) satisfy condition (1.12), and on a smooth surface S the inequal-
ity

|U(y)| ≤ δ, 0 < δ < M, y ∈ S. (3.14)

Then the following estimates is true
at m = 2k, k ≥ 1:

|U(x)| ≤ C(λ, x)σkM1− xm
a δ

xm
a , σ > 1, x ∈ G, (3.15)∣∣∣∣∂U(x)∂xj

∣∣∣∣ ≤ C(λ, x)σkM1− xm
a δ

xm
a , σ > 1, x ∈ G, j = 1,m. (3.16)

at m = 2k + 1, k ≥ 1:

|U(x)| ≤ C(x)σk+1M1− xm
a δ

xm
a , σ > 1, x ∈ G, (3.17)∣∣∣∣∂U(x)∂xj

∣∣∣∣ ≤ C(x)σk+1M1− xm
a δ

xm
a , σ > 1, x ∈ G, j = 1,m. (3.18)

Let U(y) ∈ A(G) and instead of functions U(y) on S with its approximations
fδ(y)respectively, with an error 0 < δ < M ,

max
S

|U(y)− fδ(y)| ≤ δ (3.19)

We put

Uσ(δ)(x) =

∫
S

Nσ(y, x;λ)fσ(y)dsy, x ∈ G. (3.20)

Theorem 3.5. Let U(y) ∈ A(G) on the part of the plane ym = 0 satisfy condition (3.8).
Then the following estimates is true
at m = 2k, k ≥ 1:∣∣U(x)− Uσ(δ)(x)

∣∣ ≤ C(λ, x)σkM1− xm
a δ

xm
a , σ > 1, x ∈ G, (3.21)∣∣∣∣∂U(x)∂xj

−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ C(λ, x)σkM1− xm
a δ

xm
a , σ > 1, x ∈ G, j = 1,m. (3.22)

at m = 2k + 1, k ≥ 1:∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(x)σk+1M1− xm

a δ
xm
a , σ > 1, x ∈ G, (3.23)∣∣∣∣∂U(x)∂xj

−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ C(x)σk+1M1− xm
a δ

xm
a , σ > 1, x ∈ G, j = 1,m. (3.24)
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Corollary 3.6. For each x ∈ G , the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)

∂xj
=
∂U(x)

∂xj
, j = 1,m.

Corollary 3.7. If x ∈ Gε, then the families of functions {Uσ(δ)(x)} and
{
∂Uσ(δ)(x)

∂xj

}
converge

uniformly for δ → 0, i.e.:

Uσ(δ)(x)⇒U(x),
∂Uσ(δ)(x)

∂xj
⇒
∂U(x)

∂xj
, j = 1,m.

In this paper, we have found an approximate solution to the problem based on the properties
of the Carleman matrix. If the Carleman matrix is known, then it is no longer difficult to find a
regularized solution in explicit form. In this case, we have that the solution to the problem exists
and is continuously differentiable in a closed region with exactly specified Cauchy data.

We note that for solving applicable problems, the approximate values of U(x) and
∂U(x)

∂xj
, x ∈ G, j=1,m should be found.

As a result, we constructed a family of vector functions U(x, fδ) =Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=
∂Uσ(δ)(x)

∂xj
, (j=1,m), which depend on the parameter σ. It is additionally proved

that under specific conditions and a special choice of the parameter σ=σ(δ), at δ → 0, the family

Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
are convergent to a solution U(x) and its derivative

∂U(x)

∂xj
, x ∈ G at

point x ∈ G. Here we will call Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
the regularized solution of the problems

(1.3) and (3.1).

4 Solution of the Cauchy problem for matrix factorizations of the Helmholtz
equation in an unbounded multidimensional domain

To tackle the Cauchy problem effectively, one must consider the appropriate boundary condi-
tions and how they relate to the unbounded domain. The utilization of matrix decomposition
techniques, such as singular value decomposition or the QR factorization, provides unique ad-
vantages in analyzing the stability and convergence of the solutions. These factorizations en-
able a clearer understanding of the underlying structure of the solution space, facilitating nu-
merical methods that can efficiently approximate solutions even in complex scenarios. More-
over, exploring the interplay between the Helmholtz equation and various numerical method-
ologies—including finite element methods and boundary integral equations—underscores the
versatility of matrix factorization approaches. Establishing a robust theoretical framework is
essential for deriving convergence results and ensuring that numerical solutions closely adhere
to the analytical counterparts derived from the original Cauchy problem. Ultimately, advancing
our understanding of matrix factorizations within the context of the Helmholtz equation not only
enhances solution techniques but also broadens the applicability of these methods across diverse
fields such as acoustics, electromagnetism, and geophysics. The ongoing research in this area
promises to unlock new insights and improve computational efficiency, thereby addressing some
of the pressing challenges in applied mathematics and theoretical physics.

G ⊂ Rm is an unbounded simply-connected domain with piecewise smooth boundary con-
sisting of the plane T : ym= 0 and a smooth surface S lying in the half-space ym> 0, i.e.,
∂G=S ∪ T, T = ∂G\S.

We denote byA(G) the class of vector functions in the domainG continuous onG = G
⋃
∂G

and satisfying system (1.1).
Problem 3. Suppose U(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S. (4.1)



174 D.A. Juraev, A.A. Tagiyeva, J.D. Bulnes and B. Drumea

Here, f(y) a given continuous vector-function on S. It is required to restore the vector func-
tion U(y) in the domain G, based on it’s values f(y) on S.

If U(y) ∈ A(G), then the following integral formula of Cauchy type is valid

U(x) =

∫
∂G

N(y, x;λ)U(y)dsy, x ∈ G. (4.2)

where
N(y, x;λ) =

(
E(φm(λr)u0)D∗

(
∂

∂x

))
D(tT ).

Here t = (t1, . . . , tm)−is the unit exterior normal, drawn at a point y, the surface ∂G, φm(λr)
is the fundamental solution of the Helmholtz equation in Rm, where φm(λr) defined by the
formula (1.4).

Let G ⊂ Rm be an unbounded domain, with a piecewise smooth boundary ∂G (∂G−extends
to infinity).

We denote by GR the part G lying inside the circle of radius R with center at zero:

GR = {y : y ∈ G, |y| < R}, G∞
R = G\GR, R > 0.

Theorem 4.1. Let U(y) ∈ A(G), G be a finitely connected unbounded domain in Rm, with
piecewise-smooth boundary ∂G. If for each fixed x ∈ G we have the equality

lim
R→∞

∫
G∞

R

N(y, x;λ)U(y)dsy = 0, (4.3)

then the formulas (1.6) and (1.7) is true.

We denote by Aρ(G) is the class of vector-valued functions from A(G), satisfying the fol-
lowing growth condition:

Aρ(G) = {U(y) ∈ A(G), |U(y)| ≤ exp[0(exp ρ |y′|)], y → ∞, y ∈ G}.

We define the function Φ(y, x;λ) at y ̸= x by the equalities (1.6) and (1.7).
In the formula (1.6) and (1.7), choosing

K(w) =
1

(w − xm + 2h)k
exp(σw), k ≥ 1, σ > 0,

K(xm) =
1

(2h)k
exp(σxm), 0 < xm < h, h =

π

ρ
.

(4.4)

we get

Φσ(y, x;λ) =
e−σxm

cm(2h)−k

∂k−1

∂sk−1

∞∫
0

Im
[

exp(σw)
(w − xm + 2h)k(w − xm)

]
uI0(λu)√
u2 + α2

du,

m = 2k, k ≥ 1,

(4.5)

Φσ(y, x;λ) =
e−σxm

cm(2h)−k

∂k−1

∂sk−1

∞∫
0

Im
[

exp(σw)
(w − xm + 2h)k(w − xm)

]
cos(λu)√
u2 + α2

du,

m = 2k + 1, k ≥ 1.

(4.6)

The formula (4.2) is true if instead φm(λr) of substituting the function

Φσ(y, x;λ) = φm(λr) + gσ(y, x;λ). (4.7)

Then the integral formula (4.2) has the form:

U(x) =

∫
∂G

Nσ(y, x;λ)U(y)dsy, x ∈ G. (4.8)



ON THE REGULARIZATION OF THE CAUCHY PROBLEM 175

where
Nσ(y, x;λ) =

(
E(Φσ(y, x;λ)u0)D∗

(
∂

∂x

))
D(tT )

Here is aρ = max
y∈S

Rewρ
0 .

Theorem 4.2. Let U(y) ∈ Aρ(G) it satisfy the inequality

|U(y)| ≤M, y ∈ T = ∂G\S, x ∈ G. (4.9)

If

Uσ(x) =

∫
S

Nσ(y, x;λ)U(y)dsy, x ∈ G, (4.10)

then the following estimates are true
at m = 2k, k ≥ 1:

|U(x)− Uσ(x)| ≤ Cρ(λ, x)Mσke−σxm , σ > 1, x ∈ G, (4.11)

∣∣∣∣∂U(x)∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)Mσke−σxm , σ > 1, x ∈ G, j = 1,m, (4.12)

at m = 2k + 1, k ≥ 1:

|U(x)− Uσ(x)| ≤ Cρ(x)Mσk+1e−σxm , σ > 1, x ∈ G, (4.13)

∣∣∣∣∂U(x)∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤ Cρ(x)Mσk+1e−σxm , σ > 1, x ∈ G, j = 1,m. (4.14)

Here and below functions bounded on compact subsets of the domain G, we denote by
Cρ(λ, x) and Cρ(x).

Corollary 4.3. For each x ∈ G, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)

∂xj
=
∂U(x)

∂xj
, j = 1,m.

We denote by Gε the set

Gε = {(x1, . . . , xm) ∈ G, a > xm ≥ ε, a = max
T
ψ(x′), 0 < ε < a}.

Here, at m = 2, ψ(x1)−is a curve, and at m > 2, ψ(x′)−is a surface. It is easy to see that
the set Gε ⊂ G is compact.

Corollary 4.4. If x ∈ Gε then the families of functions {Uσ(x)} and
{
∂Uσ(x)

∂xj

}
converge uni-

formly for σ → ∞, i.e.:

Uσ(x)⇒U(x),
∂Uσ(x)

∂xj
⇒
∂U(x)

∂xj
, j = 1,m.

Suppose that the curve S is given by the equation

ym = ψ(y′), y′ ∈ Rm−1,

where ψ(y′) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T
ψ(y′), b = max

T

√
1 + ψ′2(y′).
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Theorem 4.5. LetU(y) ∈ Aρ(G) satisfy condition (1.12), and on a smooth curve S the inequality

|U(y)| ≤ δ, 0 < δ < M, y ∈ S. (4.15)

Then the following estimates is true
at m = 2k, k ≥ 1:

|U(x)| ≤ Cρ(λ, x)σ
kM1− xm

a δ
xm
a , σ > 1, x ∈ G, (4.16)

∣∣∣∣∂U(x)∂xj

∣∣∣∣ ≤ Cρ(λ, x)σ
kM1− xm

a δ
xm
a , σ > 1, x ∈ G, j = 1,m. (4.17)

at m = 2k + 1, , k ≥ 1:

|U(x)| ≤ Cρ(x)σ
k+1M1− xm

a δ
xm
a , σ > 1, x ∈ G, (4.18)

∣∣∣∣∂U(x)∂xj

∣∣∣∣ ≤ Cρ(x)σ
k+1M1− xm

a δ
xm
a , σ > 1, x ∈ G, j = 1,m. (4.19)

Let U(y) ∈ Aρ(G) and instead of functions U(y) on S with its approximations fδ(y) respec-
tively, with an error 0 < δ < 1,

max
S

|U(y)− fδ(y)| ≤ δ. (4.20)

We put

Uσ(δ)(x) =

∫
S

Nσ(y, x;λ)fσ(y)dsy, x ∈ G. (4.21)

Theorem 4.6. Let U(y) ∈ Aρ(G) on the part of the plane ym = 0 satisfy condition (4.9).
Then the following estimates is true
at m = 2k, k ≥ 1:∣∣U(x)− Uσ(δ)(x)

∣∣ ≤ Cρ(λ, x)σ
kM1− xm

a δ
xm
a , σ > 1, x ∈ G, (4.22)

∣∣∣∣∂U(x)∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)σ
kM1− xm

a δ
xm
a , σ > 1, x ∈ G, j = 1,m. (4.23)

at m = 2k + 1, k ≥ 1:∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(x)σ

k+1M1− xm
a δ

xm
a , σ > 1, x ∈ G, (4.24)

∣∣∣∣∂U(x)∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ Cρ(x)σ
k+1M1− xm

a δ
xm
a , σ > 1, x ∈ G, j = 1,m. (4.25)

Corollary 4.7. For each x ∈ G, the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)

∂xj
=
∂U(x)

∂xj
, j = 1,m.

Corollary 4.8. If x ∈ Gε, then the families of functions {Uσ(δ)(x)} and
{
∂Uσ(δ)(x)

∂xj

}
converge

uniformly for δ → 0, i.e.:

Uσ(δ)(x)⇒U(x),
∂Uσ(δ)(x)

∂xj
⇒
∂U(x)

∂xj
, j = 1,m.
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In this paper, we have found an approximate solution to the problem based on the properties
of the Carleman matrix. If the Carleman matrix is known, then it is no longer difficult to find a
regularized solution in explicit form. In this case, we have that the solution to the problem exists
and is continuously differentiable in a closed region with exactly specified Cauchy data.

We note that for solving applicable problems, the approximate values of U(x) and
∂U(x)

∂xj
, x ∈ Gρ, j=1,m should be found.

As a result, we constructed a family of vector functions U(x, fδ) =Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=
∂Uσ(δ)(x)

∂xj
, (j=1,m), which depend on the parameter σ. It is additionally proved

that under specific conditions and a special choice of the parameter σ=σ(δ), at δ → 0, the family

Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
are convergent to a solution U(x) and its derivative

∂U(x)

∂xj
, x ∈ Gρ at

point x ∈ Gρ. Here we will call Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
the regularized solution of the problems

(1.1) and (4.1).

5 Conclusion

To establish the groundwork for our analysis, we first consider the mathematical structure of the
Helmholtz equation, emphasizing the significance of its matrix factorizations. These factoriza-
tions play a pivotal role in addressing the ill-posed nature of the Cauchy problem, particularly
within the framework of both bounded and unbounded domains. We investigate the interplay be-
tween the analytical properties of the solution and the characteristics of the Cauchy data, reveal-
ing the conditions under which stable extensions can be derived. Subsequent to the derivation of
explicit formulae, we apply a regularization strategy that employs both spectral and non-spectral
approaches. This duality not only facilitates the stabilization of solutions but also ensures that
the convergence behavior remains consistent even in the presence of perturbations. We demon-
strate that these regularized solutions retain the essential features of the original problem while
mitigating the adverse effects of noise in the data. The stability estimation we present hinges
on classical functional analysis principles, allowing for a comprehensive evaluation of the solu-
tion’s robustness. By performing a thorough sensitivity analysis, we identify critical thresholds
that delineate the boundaries of stability, thus equipping practitioners with essential insights for
application in various fields, including acoustics, electromagnetism, and geophysical imaging.
Our investigation further elucidates the significant role of matrix factorizations in the stability of
solutions to the Helmholtz equation under diverse conditions. By formulating the problem within
the context of operator theory, we establish connections between the eigenvalue spectra of the
governing operators and the stability of numerical solutions. In particular, we derive bounds on
the condition numbers associated with various factorization schemes, which serve as indicators
of stability in the presence of noisy Cauchy data. This analytical framework not only enriches
our understanding of the equation’s eigenfunctions but also provides a pathway for enhancing
computational algorithms. Moreover, the application of regularization techniques, particularly
in ill-posed problems, becomes paramount in ensuring that our solutions are not only mathemat-
ically coherent but also practically viable. By drawing from a variety of regularization method-
ologies, including Tikhonov and Landweber approaches, we showcase how integrating multiple
regularization pathways can yield superior outcomes. This multidimensional strategy allows for
a more robust framework capable of contending with real-world data imperfections, enhancing
the adaptability of the Helmholtz solution across applications in engineering and physics. Lastly,
our sensitivity analysis reveals that the interplay between the Cauchy data and the Helmholtz
equation’s inherent properties delineates critical operational thresholds. These insights empower
practitioners to make informed decisions that optimize performance while safeguarding against
instability, underscoring the importance of this research within both theoretical and applied con-
texts.

Through this research, we contribute to a deeper mathematical understanding while providing
practical methodologies for real-world applications. By translating our mathematical findings
into actionable methodologies, we pave the way for improved practices in fields reliant on precise
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modeling of wave phenomena.
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