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1|Introduction    

The Riemann zeta function stands at the heart of analytic number theory, representing one of the most 

profound and extensively studied objects in mathematics. Originally introduced by Bernhard Riemann in the 
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Abstract 

This paper presents a study of the distribution of zeros of the Riemann zeta function, specifically focusing on those of 

odd order, within short intervals along the critical line. The Riemann zeta function plays a central role in analytic 

number theory, and its nontrivial zeros are deeply connected with the distribution of prime numbers. The critical line, 

where the real part of the argument is one-half, is of particular interest due to the famous Riemann Hypothesis, which 

suggests that all nontrivial zeros lie on this line. Although the hypothesis remains unproven, considerable progress has 

been made in understanding the behavior and density of these zeros. The objective of this study is to examine the 

frequency and location of odd-order zeros in small neighborhoods on the critical line. We build upon earlier 

foundational work by mathematicians such as Hardy, Littlewood, Selberg, and Karatsuba. Their contributions 

established the groundwork for understanding the occurrence of zeros in specific ranges, and this paper aims to refine 

and extend those results. In particular, we aim to verify a hypothesis that proposes the presence of a significant number 

of such zeros in very short intervals. To achieve this, we utilize analytic methods involving trigonometric sums and 

exponential pair techniques. These approaches allow us to estimate the relevant quantities without requiring explicit 

evaluation of the zeros themselves. The method employed in this paper refines previous bounds and enables the 

detection of zeros in intervals that are shorter than those considered in earlier works. Additionally, this study provides 

sharper criteria under which the existence of such zeros can be guaranteed. Our findings support the hypothesis that 

zeros of odd order are not only present but relatively frequent in short segments along the critical line. This contributes 

valuable insight into the fine-scale structure of the zeta function’s zeros and affirms the robustness of analytic 

techniques based on exponential sums. Moreover, the results have broader implications in number theory, particularly 

in areas concerned with prime number theorems and related analytic functions. 

Keywords: Riemann zeta function, Exponential pair, Critical line, Trigonometric sum, Odd-order zeros, Nontrivial 
estimate, Absolute constant, Selberg sum. 
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mid-nineteenth century, the function encodes deep information about the distribution of prime numbers. 

Among the most intriguing aspects of this function are its nontrivial zeros, whose behavior governs critical 

results in prime number theory and beyond. The famous Riemann Hypothesis proposes that all nontrivial 

zeros lie along a specific vertical line in the complex plane, known as the critical line. Despite extensive 

numerical verification and theoretical exploration, this hypothesis remains unproven. Interest in the zeros of 

the zeta function, particularly those on the critical line, has driven a century of mathematical research. Early 

advances by Hardy demonstrated that an infinite number of such zeros exist. Subsequent contributions by 

mathematicians such as Littlewood, Selberg, and Karatsuba have gradually revealed more detailed information 

about the location, density, and nature of these zeros. 

One aspect that has received increasing attention is the distribution of zeros within short intervals along the 

critical line. The challenge lies in estimating how many zeros, especially of odd order, can be found in very 

small segments, and under what conditions their existence can be guaranteed. This paper aims to contribute 

to this ongoing investigation by refining previously established results concerning the presence of odd-order 

zeros in short intervals. The significance of focusing on odd-order zeros lies in their close connection to the 

structure of the Hardy Z-function, which provides a real-valued representation of the zeta function along the 

critical line. Understanding the distribution of these specific zeros can offer more precise insights into the 

behavior of the zeta function and potentially lead to advancements in related conjectures. To address this, we 

apply advanced techniques based on the theory of exponential sums. These tools allow us to estimate the 

frequency and distribution of zeros indirectly, bypassing the need for explicit computation of their locations. 

The exponential pair method, in particular, has proven highly effective in previous studies and forms a core 

component of our approach. By refining these methods, we aim to establish improved bounds on the number 

of odd-order zeros within short segments and verify certain long-standing hypotheses under more general 

conditions. This work not only deepens our understanding of the Riemann zeta function but also contributes 

to broader developments in number theory. The techniques and results discussed herein may have 

implications for other functions with similar analytic structures and could influence future efforts to resolve 

the Riemann Hypothesis itself. Through this study, we continue the long tradition of exploring the fascinating 

and intricate world of zeta-function zeros.  

The zeros of the Riemann zeta-function on short intervals of the critical line are both an interesting and 

challenging study in analytic number theory. The Riemann zeta-function ζ(s), regularly analytically extended 

to the entire complex plane except for a single special point s = 1, has been the basis for many essential 

conclusions in analytic number theory.  

The study of zeros of the Riemann zeta function on short intervals of the critical line opens new possibilities 

for a deeper study of prime numbers and their properties. This is an actively developing and topical direction 

in mathematics, which continues to attract the attention of a wide range of mathematical scientists who can 

expand our knowledge and continue the path for future discoveries. 

The eminent German mathematician Riemann [1] formulated a hypothesis assuming that all nontrivial zeros 

of the Riemann zeta function are on a "critical line". Despite many studies and experiments, this hypothesis 

still remains unproven. 

The first important result related to the location of zeros of the zeta function on the critical line was the 

theorem proved by Hardy [2]. He managed to prove that the number of such zeros is infinite. This discovery 

was a significant step in understanding the properties of the Riemann zeta function and paved the way for 

further research in this area. 

Hardy et al. [3] proved the following statement: for any positive value of, there exists such T0, dependent on 

ε, greater than zero, for all T, greater than T0, H ⩾ T
1

4
+ε the interval (T, T + H) contains an odd-order zero of 

the function ζ (
1

2
+ it). It follows that the interval (0, T) contains more than T

3

4
+ε zeros of odd order of the 

function ζ (
1

2
+ it). 



 Zeros of the riemann zeta function on short intervals of the critical line 

 

30

 

  The number of zeros of the function, lying on the interval, we denote by. We recall the significant 

contributions of G. Hardy and D. Littlewood carried out in 1921 [4]. In the course of their research, these 

scientists proved the following theorem: For any there exists such that at, the inequality is true. 

In 1942, the eminent mathematician Atle Selberg [5] successfully proved an amplified version of Hardy and 

Littlewood's theorem, which has a special significance, i.e., if the conditions of Hardy and Littlewood's 

theorem are satisfied, the inequality is true: 

In A.Selberg's evaluation of Inequality (1), an interesting hypothesis arose that Inequality (1) can be fulfilled also 

at smaller values of H, i.e., at H = Tα+ε, where α is a fixed positive number smaller than 1/2 [5]. 

In 1976, Czech mathematician Changa   et al. [6] obtained a new result in the above problem: If T ⩾ T0 > 0, 

H ⩾ T5/12ln3T is true the inequality 

c > 0 - absolute constant. 

In 1984, the outstanding mathematician Eremin  et al. [7] proved Selberg's hypothesis at α = 27/82, that is, 

he proved the following theorem: Let ε be an arbitrary positive number not exceeding 0.001, T ⩾ T0 > 0, H ⩾

T27/82+ε. Then there exists a positive constant c = c(ε)  such that 

A.A.Karatsuba made a fascinating statement about the number α = 27/82, which can be replaced by a smaller 

number [7]. However, we should pay attention to the fact that it is connected with very complicated 

evaluations of a special kind of trigonometric sums.  

2|Formulation of the Main Result 

In the present paper, applying the exponential pair method [8], following the works [9–11], we prove A. 

Selberg's hypothesis when α = 1515/4816. 

The following theorem is valid. 

Theorem 1. Let (κ, λ) be an arbitrary exponential pair, 

ε- is an arbitrary positive number not exceeding 0.001, T ⩾ T0(ε) > 0, H = Tθ(κ,λ)+ε. Then there exists a 

positive constant c = c(ε) such  

Note that the exponent θ(κ, λ) in Theorem 1 was previously considered in the Gauss problem on the number 

of integer points in a circle x2 + y2 ⩽ R, as well as in the evaluation of the residual term in the Dirichlet divisor 

problem on the number of integer points in a hyperbola xy ⩽ N, x > 0, y > 0. The best estimate from above 

for θ(κ, λ) so far has been obtained by Bourgain and Watt [12]. They proved that  

where 𝒫 is the set of all exponential pairs. 

The following follows from [12] and from Theorem 1. 

N0(T + H) − N0(T) ⩾ cH.  

N0(T + H) − N0(T) ⩾ cHlnT. (1) 

N0(T + H) − N0(T) ⩾ cH,  

N0(T + H) − N0(T) ⩾ cHlnT.  

θ(κ, λ) =
κ + λ

2κ + 2
,  

N0(T + H) − N0(T) ⩾ cHlnT.  

θ0 = min
κ,λ∈𝒫

θ(κ, λ) = min
κ,λ∈𝒫

κ + λ

2κ + 2
⩽

1515

4816
=

1

3
−

271

3 ⋅ 4816
≈ 0.314576,  
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Corollary. Let ε be an arbitrary positive number not exceeding 0.001, T ⩾ T0(ε) > 0, H = T

1515

4816
+ε. Then there 

exists a positive constant c = c(ε) such that  

3|Proof of Theorem 1  

Let X = T0.01ε. Consider the Hardy-Selberg function F(t), at T ⩽ t ⩽ T + H: 

and real numbers α(ν) are determined from the equality  

It follows from the definition of the function F(t) and the functional equation ζ(s) that the function F(t) 

takes on valid values at valid t, and the valid zeros F(t) of odd order are the valid zeros of the odd order 

function ζ(0,5 + it).  

Assume that, where is a constant, the value will be specified in Section 3. We denote by the symbol  a subset 

of the interval, on which the inequality is satisfied 

Since outside E, these integrals are equal, then  

Using Cauchy's inequality, we can obtain the following relation: 

where  

Evaluating from below the integral I1 and from above the integrals I2, I3, we obtain the following evaluation 

from below for the measure of the set  E: 

hence, the validity of the theorem is deduced. 

Evaluating the integral 𝐈𝟏 from below 

First of all, we derive the following relations sequentially: 

N0(T + H) − N0(T) ⩾ cHlnT.  

F(t) = eiθ(t)ζ(0,5 + it) |φ (
1

2
+ it)|

2
,    eiθ(t) =

π−it/2Γ(
1

4
+

it

2
)

|Γ(
1

4
+

it

2
)|

,  

φ (
1

2
+ it) = ∑

ν⩽X

β(ν)

√ν
ν−it,    β(ν) = {α(ν) (1 −

lnν

lnX
) , 1 ⩽ ν < X,

0, ν ⩾ X,
 

 

1

√ζ(s)
= ∑

∞

ν=1

α(ν)

νs
,    Res > 1.  

∫

t+h

t

|F(u)|du > |∫

t+h

t

F(u)du| ,    t ∈ E.  

∫

T+H

T

∫

t+h

t

|F(u)|dudt ⩽ ∫

E

dt (∫

t+h

t

|F(u)|du) + ∫

T+H

T

|∫

t+h

t

F(u)du| dt.  

I1 ⩽ √μ(E)I2 + √HI3,  

I1 = ∫

T+H

T

∫

t+h

t

|F(u)|dudt,    I2 = ∫

T+H

T

(∫

t+h

t

|F(u)|du)

2

dt,    I3 = ∫

T+H

T

|∫

t+h

t

F(u)du|

2

dt.  

μ(E) > c1H,    c1 > 0,  
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By Γ  we denote a rectangle with vertices: 0,5 + i(T + h), 2 + i(T + h), 2 + i(T + H), 0,5 + i(T + H). In this 

rectangle, the function ζ (
1

2
+ it) φ2 (

1

2
+ it) is analytic and single-valued. Then, by Cauchy's theorem, the  

following holds  

which can be represented in the following form: 

Using the definitions of the function φ(s), at Res > 1, we have  

and |a(n)| ⩽ τ3(n). Hence, it follows  

At σ ⩾ 1/2, using estimates 

we get 

Substituting the found Estimates (5)-(7) into Estimate (4), then into Estimate (3), we have the following estimate 

from below for the integral I1: 

To evaluate the integrals from above I2  and I3 we use the functional equation of the Hardy-Selberg function 

F(t), T ⩽ t ⩽ T + H, X = T0.001ε  

where 

I1 = ∫

T+H

T

∫

t+h

t

|F(u)|dudt ⩾ h ∫

T+H

T+h

|F(u)|du ⩾ h | ∫

T+H

T+h

ζ (
1

2
+ it) φ2 (

1

2
+ it) dt|. (3) 

∫

Γ

ζ(s)φ2(s)ds = 0,  

∫
T+H

T+h
ζ (

1

2
+ it) φ2 (

1

2
+ it) dt = ∫

T+H

T+h
ζ(2 + it)φ2(2 + it)dt −  

−i ∫
2

1

2

ζ(σ + i(T + H))φ2(σ + i(T + H))dσ + i ∫
2

1

2

ζ(σ + i(T + h))φ2(σ + i(T + h))dσ.               

(4) 

ζ(s)φ2(s) = ∑

∞

n=1

  ∑

ν1<X

∑

ν2<X

β(ν1)β(ν2)

(nν1ν2)s
= ∑

∞

n=1

a(n)

ns
= 1 + ∑

∞

n=2

a(n)

ns
,  

∫

T+H

T+h

ζ(2 + it)φ2(2 + it)dt = H − h + O (∑

∞

n=2

a(n)

n2lnn
) = H − h + O(1). (5) 

|φ(s)| ⩽ 2√X,    ζ(σ + it) = O(t1/6lnt),    φ(σ + it) = O(√X),  

∫

2

1
2

ζ(σ + i(T + H))φ2(σ + i(T + H))dσ = O (T
1
6XlnT), (6) 

∫

2

1
2

ζ(σ + i(T + h))φ2(σ + i(T + h))dσ = O (T
1
6XlnT). (7) 

I1 ⩾ hH − h2 + O(T1/6XlnT).  

F(t) = F1(t) + F1(t) + O(t−1/4X2lnt),  
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ν1, ν2 < X, λ are rational numbers whose denominator does not exceed X. Replacing P1 = √t/(2π) by P =

√T/(2π), and θ1(t) by θ(t) = tlnP − T/2 − π/8 we find  

where 

Trivially evaluating the sums R1 and R2, we 

Thus, we have 

Assume that  satisfies the equality, where is an integer, then 

Evaluation of the integral 𝐈𝟐 from above 

To the internal integral, applying Cauchy's inequality and then Formula (8), we find 

where 

Now, let's evaluate from above the integral  J. We have 

Using the formula 

at real value α, we have  

F1(t) = eiθ1(t) ∑

λ<√t/(2π)

a(λ)

√λ
λ−it,    θ1(t) = tln√

t

2π
−

t

2
−

π

8
,    a(λ) = ∑

nν2/ν1=λ

β(ν1)β(ν2)

ν1
,  

F1(t) = F0(t) + R1 + R2,  

F0(t) = eiθ(t) ∑

λ<P

a(λ)

√λ
λ−it,    R1 ≪

H2

T
∑

λ<P1

a(λ)

√λ
λ−it,    R2 ≪ | ∑

P⩽λ⩽P1

a(λ)

√λ
λ−it|.  

F1(t) = F0(t) + O(ln−5T).  

F(t) = F0(t) + F0(t) + O(ln−5T). (8) 

F0(t) = eilnP ∑

λ<P

a(λ)

√λ
λ−it.  

I2 ⩽ h2 ∫

T+H+h

T

|F0(u) + F0(u) + O(log−5T)|
2

du ≪ h2(J + Hℒ−10),  

J = ∫

T+H1

T

|F0(t)|2dt,    H1 = H + h,    ℒ = lnT.  

J = ∫

H1

0

|F0(T + t)|2dt ⩽ e ∑

λ1<P

∑

λ2<P

a(λ1)a(λ2)

√λ1λ2

(
λ1

λ2
)

iT

∫

∞

−∞

exp (− (
t

H1
)

2

+ itln
λ1

λ2
) dt.  

∫

∞

−∞

exp(−t2 − iαt)dt = √πexp (− (
α

2
)

2

),  

J ⩽ e√πH1 ∑

λ1<P

∑

λ2<P

a(λ1)a(λ2)

√λ1λ2

(
λ1

λ2
)

iT

exp (− (
H1

2
ln

λ1

λ2
)

2

).  
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  Representing the last twofold as the sum of two summands, one of which occurs when λ1 = λ2, we obtain 

the estimate of 

where 

Taking into account [7], for Σ0, we obtain the following estimate:  

To estimate the sum of W0 and other similar sums that appear below, we will consider the following sum of 

the form 

where H1 = H + h or H1 = H and B(λ) is an arbitrary complex number with the condition |B(λ)| ⩽ B.  

Let us fix ν1, ν2, ν3, ν4; let 
ν2ν3

ν1ν4
=

a

b
, (a, b) = 1. Assuming N = Λν2/ν1, N1 = Λ1ν2/ν1, consider the sum of W1 

over n1, n2, 

The following inequality is true: 

Next, we estimate W1. We have 

where 

where the new symbols have been introduced: 

In Inequality (10), we apply Abel transformations to the inner sum over m and find  

J ≪ H1(Σ0 + W0),  

Σ0 = ∑

λ<P

a2(λ)

λ
,    W0 = | ∑

λ1<P

∑

λ2<P

a(λ1)a(λ2)

√λ1λ2

(
λ1

λ2
)

iT

exp (− (
H1

2
ln

λ2

λ1
)

2

)|.  

Σ0 ≪
lnP

lnX
. (9) 

W = | ∑

λ1<λ2<P

a(λ1)a(λ2)

√λ1λ2

(
λ2

λ1
)

iT

B(λ1)B(λ2)e
−(

H1
2

ln
λ2
λ1

)
2

|,  

W1 = | ∑

N<n1⩽N1

∑

n1ba−1<n2⩽n1ba−1(1+H−1ℒ)

1

√n1n2
(

n2a

n1b
)

iT

B (
n1ν1

ν2
) B (

n2ν3

ν4
) e

−(
H1
2

ln
n2a
n1b

)
2

|.  

W(Λ) ⩽ ∑

ν1,ν2,ν3,ν4

1

√ν1ν2ν3ν4

  W1.  

W1 ⩽ ∑

0⩽r1<a

∑

0⩽r2<b

  W2,  

W2 ⩽
1

√ab
∑

0⩽h⩽H2

| ∑

M<m⩽M1

E(m, h) (
m + h + ξ3

m + ξ2
)

iT

|, (10) 

E(m h) =
B1(m1)B2(m;h)

√(m+ξ2)(m+h+ξ3)
e

−(
H1
2

ln
m+h+ξ3

m+ξ2
)

2

,   

H2 = 2N1a−1H−1ℒ ξ2 = r1a−1     ξ3 = r2b−1     Na−1 < M ⩽ M1 ⩽ N1a−1,  
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where 

Since the function E(u, h) is piecewise monotone, passing to the estimate (10), we find  

Therefore, we get  

Estimating the sum of C(u). To estimate the sum of C(u), we will use the exponential pair method [8]. 

Suppose, 

Find the derivative k -th order of the function f(u) (k = 1,2, . ..):  

Therefore 

Hence, for any exponential pair (κ, λ), we have 

Keeping in mind that  |h + ξ1 − ξ2| ≪ H2 ≪ Na−1H−1L, Na−1 < M ⩽ 2Na−1, we get 

Substituting the found estimate into the expression for W1, we have  

Given that N =
Λν2

ν1
, 

a

b
=

ν2ν3

ν1ν4
, 0,5 + λ − κ > 0.5, we find  

Substituting the found estimate into the expression for W(Λ), and summing over  ν1, ν2, ν3, ν4 , we obtain  

∑

M<m⩽M1

E(m, h) (
m + h + ξ3

m + ξ2
)

iT

= − ∫

M1

M

C(u)Eu′(u, h)du + E(M1, h)C(M1),  

C(u) = ∑

M<m⩽u

e (
T

2π
ln

m + h + ξ3

m + ξ2
),    |E(u, h)| ⩽

B0
2

u
.  

| ∑

M<m⩽M1

E(u, h) (
m + h + ξ3

m + ξ2
)

iT

| ≪
B0

2

M
max
u⩽M1

|C(u)|.  

W2 ⩽
B0

2

M√ab
∑

0⩽h⩽H2

| ∑

M<m⩽u

e (
T

2π
ln

m + h + ξ3

m + ξ2
)|.  

f(u) =
T

2π
ln

u + h + ξ3

u + ξ2
,    B = u − M ⩽ M1 − M ⩽ M,    A =

T|h + ξ3 − ξ2|

M2
.  

f (k)(u) =
(−1)k(k − 1)! T(h + ξ3 − ξ2)

2π
∑

k−1

j=0

1

(u + ξ2)k+j(u + h + ξ3)k−j
,    k = 1,2, …  

AB1−k ≪ f (k)(u) ≪ AB1−k.  

W2 ≪
B0

2

M√ab
∑

0⩽h⩽H2

(
T|h + ξ1 − ξ2|

M2
)

κ

Mλ.  

W2 ≪
B0

2

√ab
M−1−2κ+λTκH2

κ+1 ≪
B0

2

√ab
N−κ+λaλ−κTκH−κ−1ℒκ+1.  

W1 ⩽ ∑

0⩽r1<a

∑

0⩽r2<b

B0
2

√ab
N−κ+λaλ−κTκH−κ−1ℒκ+1 ≪ B0

2N−κ+λa0,5+λ−κb0,5TκH−κ−1ℒκ+1.  

W1 ≪ ν1
0,5+κ−λν2

2(λ−κ)+0,5
ν3

0,5+λ−κν4
0,5TκH−κ−1ℒκ+1B0

2Λλ−κ.  

W(Λ) ≪ B0
2Λλ−κTκH−κ−1X4+2(λ−κ)ℒκ+1.  
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Since HX−2ℒ−1 < Λ < P = √

T

2π
  and 0 ⩽ λ − κ ⩽ 1, then  

According to the condition of the theorem, H = T
κ+λ

2(κ+1)
+ε

 and by the definition of exponential pairs 0 ⩽ κ ⩽

0,5, therefore, we find 

Substituting the found estimate into the expression for W, and taking into account the definition of the values 

B and B0 we have 

Thus, to estimate the double sum W0, assuming in the definition W, B(λ1) = 1, B0 = const, and Considering 

Eq. (11), we obtain: 

Thus, we find an estimate of the integral I2:  

Estimation of the integral I3 from above 

Similarly to the evaluation of I2, applying Relation (8), we arrive at the inequality 

Let the existing positive number ε1 not exceed 0.1, its more precise value will be specified later. Dividing the 

summation in F0(u) by the parameter λ into two parts: λ < P1−ε1 , P1−ε1 ⩽ λ < P, we obtain the following 

relation 

where 

For the integral  J1, we obtain the following estimate: 

W(Λ) ≪ B0
2T

λ−κ
2

+κH−κ−1X4+2(λ−κ)ℒκ+1 ≪ B0
2T

κ+λ
2 H−κ−1X7.  

W(Λ) ≪ B0
2 (

T
κ+λ

2(κ+1)
+

0,07ε
κ+1

H
)

κ+1

≪ B0
2T−0,93ε.  

W ≪ ℒW(Λ) + B2e−0.1ℒ2
≪ B0

2T−0,93εℒ + B2e−0.1ℒ2
≪ BT−0.9ε. (11) 

W0 ≪ T−0.9ε.  

I2 ≪ h2(H1(Σ0 + W0) + Hℒ−10) ≪ h2 (H1

lnP

lnX
+ H1T−0,9ε + Hℒ−10) ⩽ c(ε)h2H1.  

I3 = ∫
T+H

T
|∫

t+h

t
F(u)du|

2
dt ≪ J + Hh2ℒ−10,  

J = ∫
T+H

T
|∫

t+h

t
F0(u)du|

2
dt,    F0(u) = eiulnP ∑λ<P

a2(λ)

√λ
λ−iu.  

 

J ≪ J1 + J2,  

J1 = ∫

T+H

T

|∫

t+h

t

∑

λ<P1−ε1

a(λ)

√λ
(

P

λ
)

iu

du|

2

dt,    J2 = ∫

T+H

T

|∫

t+h

t

∑

P1−ε1⩽λ<P

a(λ)

√λ
(

P

λ
)

iu

du|

2

dt.  

J1 ⩽ e ∫
∞

−∞
e−(t/H)2

|∑λ<P1−ε1
a(λ)

√λ
(

P

λ
)

i(T+H) (P/λ)ih−1

ln(P/λ)
|

2

dt ≪ H(Σ1 + W1),  

Σ1 = ∑λ<P1−ε1
a2(λ)

λln2(P/λ)
,    W1 = |∑λ1<λ2<P1−ε1

a(λ1)a(λ2)

√λ1λ2
(

λ2

λ1
)

iT
B(λ1)B(λ2)e

−(
H1
2

ln
λ2
λ1

)
2

|,  
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To estimate the sum Σ1, using the inequality lnP/λ > ε1lnP  and relations (10), we obtain 

Hence, 

The integral of  J2  can be evaluated similarly to the evaluation of the integral of I2: 

Considering the values of X, h, and H1, i.e., X = T0.01ε, h = Aln−1T = Aℒ−1, H1 = H + h,  we have  

Hence, 

Without restricting generality, we will assume that 1 + Aℒ−2H−1 < 0,1, so assuming c2 = c1, we find 

Now let's take 

then 

Thus, for I3, we find 

Let's take T0 = T0(ε) > 0 so that the expression in the square bracket is less than 1/16, then 

Thus, from the estimates I1, I2 and I3, for relation (2), we obtain 

B(λ) =
(P/λ)ih−1

ln(P/λ)
.  

Σ1 = ∑

λ<P1−ε1

a2(λ)

λln2(P/λ)
<

1

ε1
2ln2P

∑

λ<P

a2(λ)

λ
≪

1

ε1
2lnPlnX

.  

J1 ≪ H(Σ1 + W1) ≪ H (
1

ε1
2lnPlnX

+ (Aε1
−1ℒ−2 + ε1

−2ℒ−2)T−0,9ε).  

J2 ≪ H1h2(Σ2 + W2) ≪ H1h2(ε1lnPln−1X + T−0,9ε), 

J ≪ H(ε1
−2ln−1Pln−1X + (Aε1

−1ℒ−2 + ε1
−2ℒ−2)T−0,9ε) + H1h2(ε1lnPln−1X + T−0,9ε),  

I3 ≪ J + Hh2ℒ−10 ⩽ c1H1(ε1
−2ln−1Pln−1X + Aε1

−1T−0,9εℒ−2 +  

+ε1
−2T−0.9εℒ−2 + ε1h2lnPln−1X + h2T−0,9ε + h2ℒ−10).  

 

ε1
−2ln−1Pln−1X ⩽ 4h2A−2ε−1ε1

−2,    Aε1
−1T−0,9εℒ−2 = h2A−1ε1

−1T−0,9ε,  

ε1
−2T−0,9εℒ−2 = h2A−2ε1

−1T−0,9ε.  

 

I3 ⩽ c1Hh2(1 + Aℒ−2H−1)(A−2ε−1ε1
−2 + ε1ε−1 + (A−1ε1

−1 + A−2ε1
−2 + 1)T−0,9ε + ℒ−10).  

I3 ⩽ c2Hh2(A−2ε−1ε1
−2 + ε1ε−1 + (A−1ε1

−1 + A−2ε1
−2 + 1)T−0,9ε + ℒ−10).  

A = ((32c2 + 32)ε−1)
1.5

,   ε1 = (32c2 + 32)−1ε,  

A2εε1
2 = 32c2 + 32,    ε1ε−1 = (32c2 + 32)−1,    Aε1 = (32c2 + 32)1/2ε−0,5.  

I3 ⩽ c3Hh2,  c3 ⩽
1

16
+ [(

ε

32
+

c2

1
2ε

1
2

√32
+ 1) T−0,9ε + ℒ−10].  

I3 ⩽
1

8
Hh2.  

√μ(E)I2 ⩾ I1 − √HI3 ⩾ hH − h2 + O(T1/6XlnT) −
1

2√2
Hh ⩾

1

2
hH,  
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Let us divide the interval (T, T + H) into intervals of the form (nh, nh + h), where n = [
T

h
] , [

T

h
] + 1, … , [

T+H

h
]. 

At least [c3Hh−1] − 2 of them contain points t of E. But if the interval (nh, nh + 2h) contains the point t of 

E, then the interval (t, t + h), and hence the interval (nh, nh + 2h) contains at least one odd-order zero of the 

function ζ(1/2 + it). Consequently, the zeros of odd order of the function ζ(1/2 + it) on the interval   (T, T +

H) are at least as large as  

which is precisely what I needed to prove.  

4|Conclusion    

In this work, we investigated the coercive properties and separability of a fourth-order differential operator 

in a weighted function space. Through the establishment of coercive inequalities, we derived sufficient 

conditions that ensure the separability of the operator under consideration. These results build upon and 

extend existing research on second-order and biharmonic operators, providing a broader theoretical 

foundation for the analysis of higher-order differential equations. The developed criteria contribute 

significantly to the theory of elliptic differential operators, particularly in weighted Hilbert spaces, where 

traditional techniques may not be directly applicable. The findings also highlight the importance of weight 

functions and function classes in determining operator behavior. This study opens the door for future 

research on nonlinear operators, matrix potentials, and boundary value problems in complex domains, 

thereby deepening our understanding of the interplay between operator theory and functional analysis.  
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