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Abstract

In this paper, the conformable fractional Laplace transform method for solving systems of fractional
differential equations is introduced. Both linear homogeneous and linear nonhomogeneous fractional
differential systems, have been considered utilizing the conformable definition of the fractional derivative.
The found solutions are plotted in 2D, which also demonstrate how the solutions are close to each other.
Additionally, the exact solution for each case is reached as the fractional order goes to 1. Furthermore,
Several numerical examples are included to demonstrate the precision and effectiveness of the proposed
technique.
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1|Introduction
Over the years, the subject of fractional calculus has been studied by many researchers. This is an ongoing
process, and we can recognize that new techniques and mechanisms are emerging in this field of fractional
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calculus, new techniques and mechanisms show up, which in turn make it possible to find important challenging
insights and unknown correlations between many areas of physics. Fractional derivatives, due to their non
locality properties, have proven their ability to describe several phenomena related to memory and after effects.
Such phenomena are commonplace in physical processes, biological structures, and cosmological issues. Since it
is difficult to find explicit solutions to these fractional problems [4, 8, 11], alternative methods [13, 14], numerical
and approximate techniques [2, 3, 7] must be used. Conformable fractional derivatives have been used by many
scholars in various academic disciplines.
The application of the conformable fractional derivatives is considered to be a fundamental and highly beneficial
methodology. Furthermore, they enhance our ability to represent the behavior exhibited by concrete entities.
Additionally, it modifies important transforms like the Laplace, Sumudu, and Nature transforms, which enable
them to be useful instruments for solving singular FDEs [12]. Abdeljawad in [1], expanded the idea and presented
the conformable Laplace transform as a generalization of the Laplace transform, building upon the concept of
the conformable fractional derivative. The Laplace transform [9, 10], is a powerful technique for solving various
linear partial differential equations having considerable significance in various fields such as engineering and
applied sciences.
Overall, the Laplace transform is a valuable tool for solving systems of fractional differential equations. It offers
a systematic approach to transform the problem into a more tractable form and then recover the solution in the
original time domain.
In this work, we implement the conformable fractional Laplace transform method (CFLTM) for solving systems
of differential equations. Both linear homogeneous and linear nonhomogeneous fractional differential systems,
have been considered. We discuss how to solve fractional homogenous and nonhomogeneous systems of fractional
differential equations using CFLTM.
The paper’s remaining sections are arranged as follows: In Section 2, we first briefly retrieve the key definitions
and theorems pertaining to conformable fractional calculus. Then, in Section 3, we introduce a novel technique
for applying the CFLTM to systems of FDEs within the conformable sense, accompanied by a description of
the theories and definitions related to fractional Laplace transform theory. To efficiently solve the fractional
systems in the conformable sense, we extend the effective analytic fractional conformable Laplace algorithm with
particular numerical examples in Section 4. Finally, in Section 5, we provide a summary of the key findings and
offer concluding remarks.

2|Preliminaries
Let us give some needed definitions and theorems that will be considered in this paper.

Definition 1. [5] Let f : [0, ∞) → R. The conformable fractional derivative of f with respect to t of order α is
defined as

Dt
α(f)(t) = lim

ϵ→0 f(t + εt1−α) − f(t)
ϵ

, for all t > 0, α ∈ (0, 1).

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

Dα
t (f)(t) exists, then Dα

t (f)(0) = lim
t→0+

Dα
t (f)(t).

Definition 2. [9] Let 0 < α ≤ 1 and f : [0, ∞) → R be a real valued function. Then the conformable fractional
Laplace transform of order α is defined as

Lα[f(t)](s) =
∞∫

0

exp(−s
tα

α
)f(t)dαt = Fα(s), (1)

one can easily see that Lα is linear.

Definition 3. [9] If K > 0 and T > 0 exist, then if there is a function f : [0, ∞) → R, it is said to be of
conformable exponential order m such that

|f(t)| ≤ Kem tα

α , for all t ≥ T.
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Theorem 1. [1] Assuming f : [0, ∞) → R is a continuous function, f (α) is a piecewise continuous real valued
function with 0 < α ≤ 1. If f is of conformable exponential order m, then

Lα[Dα
t f(t)](s) = sFα(s) − f(0), s > m, (2)

where, Fα(s) = Lα[f(t)].

To obtain additional information regarding conformable Laplace transform (CLT), please refer to [1, 6, 9].

3|Systems of Fractional Differential Equations
The steps of implementing the CFLTM to solve the following fractional systems are presented in detail in this
part.
Consider the following system of linear fractional differential equations :{

y
(α)
1 (t) = a1y1(t) + a2y2(t) + f1(t),

y
(α)
2 (t) = b1y1(t) + b2y2(t) + f2(t),

(3)

with conditions : y1(0) = c1; y2(0) = c2,
where 0 < α ⩽ 1, t > 0, f1, f2 are source terms, and y(α) is the conformable derivative.
Using the Laplace transform on both sides of Eqs. (3), we obtain{

Lα[y(α)
1 (t)] = Lα[a1y1(t) + a2y2(t) + f1(t)],

Lα[y(α)
2 (t)] = Lα[b1y1(t) + b2y2(t) + f2(t)].

(4)

The linearity property of the Laplace transform enables us to obtain

{
sLα[y1(t)] − y1(0) = a1Lα[y1(t)] + a2Lα[y2(t)] + Lα[f1(t)],
sLα[y2(t)] − y2(0) = b1Lα[y1(t)] + b2Lα[y2(t)] + Lα[f2(t)].

(5)

Let us write: Y1(s) for Lα[y1(t)], Y2(s) for Lα[y2(t)] and F1(s) for Lα[f1(t)], thus

{
(s − a1)Y1(s) − a2Y2(s) = c1 + F1(s),
(s − b2)Y2(s) − b1Y1(s) = c2 + F2(s).

(6)

These are two equations in two unknowns. So, Eqs. (6) becomes:

{
Y1(s) − a2

s−a1
Y2(s) = c1

s−a1
+ 1

s−a1
F1(s), (∗)

−b1
s−b2

Y1(s) + Y2(s) = c2
s−b2

+ 1
s−b2

F2(s). (∗∗)

Now, multiply Eq. (∗) by b1
s−b2

and summing the result with Eq. (∗∗), we get :

(s − a1)(s − b2) − a2b1

(s − a1)(s − b2) Y2(s) = c2(s − a1) + c1b1 + (s − a1)F2(s) + b1F1(s)
(s − a1)(s − b2) .

Therefore,

Y2(s) = c1b1 + b1F1(s) + (c2 + F2(s))(s − a1)
(s − a1)(s − b2) − a2b1

. (7)

Replace Y2(s) in Eq. (6), we obtain :

Y1(s) = a2

s − a1
× c1b1 + b1F1(s) + (c2 + F2(s))(s − a1)

(s − a1)(s − b2) − a2b1
+ c1

s − a1
+ 1

s − a1
F1(s)



Thus,

Y1(s) = c1

s − a1
+ a2

s − a1
[c1b1 + b1F1(s) + (c2 + F2(s))(s − a1)

(s − a1)(s − b2) − a2b1
] + F1(s)

s − a1
. (8)

Operating the inverse Laplace transform on both sides in Eq. (7) and (8), we obtain{
y1(t) = L−1

α [Y1(s)],
y2(t) = L−1

α [Y2(s)].

Hence, we get the exact solutions for the above system.

4|Applications
In this section, we use the conformable fractional Laplace transform method as an application to solve the
following two examples of fractional linear homogeneous and linear nonhomogeneous systems of order 2 × 2.
Consider the following linear homogeneous system of fractional differential equations given by{

y
(α)
1 (t) = 2y1(t) + y2(t), 0 < α ≤ 1

y
(α)
2 (t) = y1(t) + 2y2(t),

(9)

with: y1(0) = 2, y2(0) = 1.

By following the above steps, we have{
Lα[y(α)

1 (t)] = 2Lα[y1(t)] + Lα[y2(t)],
Lα[y(α)

2 (t)] = Lα[y1(t)] + 2Lα[y2(t)].
(10)

Then, it becomes {
Y1(s) − 1

s−2 Y2(s) = 2
s−2 ,

−1
s−2 Y1(s) + Y2(s) = 1

s−2 .
(11)

Which are two equations in two unknowns. So, solving Eqs. (11), we get :{
Y1(s) = 2

s−2 + s
(s−1)(s−2)(s−3) ,

Y2(s) = s
(s−1)(s−3) .

(12)

Hence, {
Y1(s) = 1

2(s−1) + 3
2(s−3) ,

Y2(s) = −1
2(s−1) + 3

2(s−3) .
(13)

Therefore, the inverse Laplace transform for Eqs. (13) gives{
y1(t) = L−1

α [Y1(s)] = 1
2 e

tα

α + 3
2 e

3tα

α ,

y2(t) = L−1
α [Y2(s)] = −1

2 e
tα

α + 3
2 e

3tα

α ,
(14)

are solutions for the above system.

In fact, for α = 1, the exact solutions of the classical system are{
y1(t) = 1

2 et + 3
2 e3t,

y2(t) = −1
2 et + 3

2 e3t.
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(a) Solution y1(t) in Con-
formable sense for different val-
ues of α.

(b) Solution y2(t) in Con-
formable sense for different val-
ues of α.

(c) Solution y(t) in conformable sense for different values of α

Figure 1. The classical (α = 1) and fractional solutions y(t) for the system of equation (14)
for 0 ≤ t ≤ 1.4 and different values of α.

Now, consider the following linear nonhomogeneous system of fractional differential equations as follows :{
y

(α)
1 (t) = y1(t) + y2(t) + 2, 0 < α ≤ 1

y
(α)
2 (t) = −y1(t) + y2(t) − 2,

(15)

with: y1(0) = −2, y2(0) = 1.
By following the above steps we obtain :{

Lα[y(α)
1 (t)] = Lα[y1(t)] + Lα[y2(t)] + Lα[2],

Lα[y(α)
2 (t)] = −Lα[y1(t)] + Lα[y2(t)] − Lα[2].

(16)

Hence, {
Y1(s) = −2

s + 1
(s−1)2+1 ,

Y2(s) = s−1
(s−1)2+1 .

(17)

Thus, {
y1(t) = L−1

α [Y1(s)] = −2 + e
tα

α sin( tα

α ),

y2(t) = L−1
α [Y2(s)] = e

tα

α cos( tα

α ),
(18)

are solutions for the given system.

In fact, for α = 1, the exact solutions for the classical system are :{
y1(t) = et sin(t) − 2,

y2(t) = et cos(t).



(a) Solution y1(t) in Con-
formable sense for different val-
ues of α.

(b) Solution y2(t) in Con-
formable sense for different val-
ues of α.

Figure 2. The classical (α = 1) and fractional solutions y(t) for the system of equation (18)
for 0 ≤ t ≤ 3.1 and different values of α.

5|Conclusion
In the present paper the CFLTM has been successfully applied to compute exact solutions for systems of
fractional differential equations, with examples of both homogeneous and nonhomogeneous linear differential
equations. The found solutions are compared graphically in 2D for different values of α. These figures also
demonstrate that the analytical solutions go to the exact one as α → 1. CFLTM can obtain a very accurate
solution in only a few iterations. Therefore, we can conclude that the CFLTM method is very powerful and
efficient in obtaining exact as well as numerical solutions.
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