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Abstract

This article presents a comprehensive analytical investigation into the differential equations satisfied by
ultraspherical Jacobi polynomials, a special subclass of classical orthogonal polynomials. The authors
begin by establishing the foundational concepts of orthogonality and orthonormality for polynomial
systems defined over a finite interval with respect to a weight function. Focusing on the ultraspherical case,
where parameters in the Jacobi weight function are equal, the article derives a specific second-order linear
differential equation governing these polynomials. The study applies symbolic differentiation, leveraging
tools such as the Rodrigues formula and Leibniz rule, to construct polynomial identities and explore their
structural properties. The work rigorously demonstrates that the derived equation is consistent with the
orthogonality conditions and captures the full behavior of the polynomials across the interval. Moreover,
the techniques employed offer practical pathways for applying ultraspherical Jacobi polynomials in solving
boundary value problems and mathematical models in physics and engineering. This research contributes
to both the theoretical enrichment and applied utility of orthogonal polynomial analysis.
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1|Introduction
The article explores the theoretical foundations and analytical development of differential equations satisfied
by ultraspherical Jacobi polynomials, a subset of classical orthogonal polynomials. These polynomials are
essential tools in mathematical physics, numerical analysis, and approximation theory due to their strong
orthogonality properties and their role in solving various classes of differential equations. The study begins with
a historical and mathematical overview of orthogonal polynomials such as Hermite, Laguerre, and Jacobi, each
of which is associated with specific weight functions over defined intervals. Among them, Jacobi polynomials
are characterized by their orthogonality on a finite interval with respect to a weight function that depends on
two parameters. In this context, the article focuses specifically on ultraspherical Jacobi polynomials, which
arise when the two parameters of the weight function are equal. These special cases are particularly relevant
in problems with spherical symmetry and have important applications in spectral methods and theoretical
physics. The authors aim to derive the differential equations that govern these polynomials by building on
foundational definitions and using symbolic differentiation techniques. The essence of the article lies in uncovering
the underlying structure of these polynomials through the lens of classical analysis. The research outlines the
orthonormality conditions of Jacobi polynomials and demonstrates how successive differentiation leads to the
discovery of a general second-order linear differential equation that is satisfied by the ultraspherical case. The
article emphasizes the systematic use of mathematical tools such as the Rodrigues formula and the Leibniz rule,
which are instrumental in constructing polynomial identities and differential relations. Methodologically, the
authors adopt a rigorous analytical approach. They begin by expressing the ultraspherical polynomials in a form
suitable for differentiation, allowing them to extract relations between the polynomials and their derivatives.
Through a careful step-by-step process, they isolate terms and restructure equations to highlight the role of each
coefficient and variable. This procedure enables the derivation of a standard differential equation, confirming its
consistency with the orthogonality properties and ensuring that it captures the full behavior of these polynomials
across the given interval. This work not only contributes to the theoretical understanding of Jacobi polynomials
but also provides a framework that can be used for developing analytical and numerical solutions in applied
mathematical models. The techniques outlined can be extended to similar classes of orthogonal polynomials and
offer insights into their applicability in solving complex physical and engineering problems.

The development of differential equations for ultraspherical Jacobi polynomials in this article builds upon a
rich tradition of research in orthogonal polynomial theory and its applications in mathematical modeling. The
foundational ideas related to orthogonal sequences and classical polynomials can be traced back to the seminal
work of Geronimus [1], where the concept of orthogonality with respect to a discrete number sequence was
rigorously studied. This foundational principle underpins the orthonormality conditions used in the current
research. In the broader context, the study benefits from previous analytical treatments by Aliyev and co-authors,
who have contributed significantly to the theory of orthogonal functions. In particular, the exploration of
Fourier series expansions for orthogonal and orthonormal functions [2] provides an important backdrop for
understanding the spectral properties of Jacobi polynomials. Additionally, prior work on constructing systems
of Chebyshev-Laguerre polynomials [3] introduced essential methods for generating polynomial systems with
predefined weight functions, which the present article adapts for the ultraspherical case. The article also draws
on methodological principles established in the construction of Jacobi polynomial systems [4], where algebraic
structure and orthogonality conditions were carefully derived. The influence of earlier research on Chebyshev
polynomial operators in Morrey-type spaces [5] is evident in the article’s treatment of differential operator
frameworks and weight-based norm definitions. Furthermore, the study intersects with modern applications of
differential and integral equations. For instance, the comparative work by Aghayeva, Ibrahimov, and Juraev [6]
on numerical methods for solving Volterra-type equations shares methodological similarities, particularly in terms
of function approximation and derivative-based modeling. Recent theoretical advances in quantum and wave
equations, as seen in the work of Bulnes et al. [7], emphasize the growing relevance of orthogonal polynomial
techniques in physical models, reinforcing the importance of the current article’s analytical focus. Similarly, the
examination of numerical methods for initial-value problems using Adams-type and multistep approaches [8]
shows the importance of exact polynomial representations for accurate computational outcomes. Finally, the
work of Bulnes, Bonilla, and Juraev [9] on the Klein-Gordon equation demonstrates how polynomial structures
can be extended to describe complex physical systems, suggesting that the ultraspherical Jacobi polynomials
explored here may also be integrated into such frameworks in future studies. Together, these references frame the
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article not only as a theoretical advancement but also as a bridge between classical analysis and contemporary
applied mathematics.

The scientific novelty of this article lies in the derivation and detailed analytical investigation of a specific
second-order linear differential equation satisfied by ultraspherical Jacobi polynomials. While classical Jacobi
polynomials and their general properties are well studied, the article provides a focused and original contribution
by isolating and formulating the ultraspherical case through direct symbolic computation and the application
of classical calculus tools. The authors introduce a methodical process to derive the corresponding differential
equation using the Rodrigues representation, which is not commonly applied with such precision in this context. A
distinctive feature of the research is its use of the Leibniz rule and higher-order derivatives to express ultraspherical
polynomials and their behavior under differentiation. This allows for the construction of a generalized identity
that connects polynomial forms with their differential properties, providing a deeper theoretical insight into
their internal structure. The derived equation elegantly captures the interplay between the weight function, the
symmetry of the interval, and the order of the polynomial. Additionally, the work establishes an analytical
foundation for extending these results to applied fields, including mathematical physics and computational
methods where such polynomials are frequently employed as basis functions. The techniques presented can be
used to explore similar differential systems associated with other classical orthogonal polynomials, offering new
paths for the study of operator equations and spectral theory. Moreover, by connecting orthonormal conditions
with explicitly derived polynomial identities, the article contributes to the development of a consistent framework
for constructing orthogonal polynomial solutions to various classes of differential equations. This synergy between
classical orthogonal theory and modern analytical methodology marks a novel and valuable addition to the
literature on special functions and their applications.

The classical orthogonal polynomials are named after Hermite, Laguerre and Jacobi. The Hermite polynomials
are orthogonal on the interval (−∞, +∞) with respect to the normal distribution h(x) = e−x2 , the Laguerre
polynomials are orthogonal on the interval (0, +∞) with respect to the gamma distribution h(x) = e−xxα

and the Jacobi polynomials are orthogonal on the interval (−1, 1) with respect to the beta distribution
h(x) = (1 − x)α(1 + x)β , α > −1, β > −1 (1).The Legendre polynomials form a special case α = β = 0 of the
Jacobi polynomials. In this article, we consider the following construction of a system of Jacobi polynomials
[3]-[5].

2|Basic information and statement of the orthogonal polynomi-las

Section 2 lays the theoretical groundwork for the study by introducing and explaining the fundamental properties
of orthogonal polynomials. It begins with a precise definition of a polynomial system where each polynomial has
a specific degree and satisfies orthogonality conditions with respect to a given weight function over a defined
interval. The authors distinguish between orthogonal and orthonormal systems, emphasizing that orthonormal
polynomials are a special case where the inner product of a polynomial with itself equals one. A central
feature discussed is the orthogonality relation, which ensures that the integral of the product of two distinct
polynomials in the system, weighted appropriately, equals zero. This section also introduces the Kronecker
delta to formalize this condition mathematically. Furthermore, the authors recall several essential properties
shared by classical orthogonal polynomials, such as their recurrence relations, second-order differential equations,
and the Rodrigues formula, which allows direct construction of these polynomials through differentiation. The
section emphasizes the role of the weight function, which shapes the behavior and applicability of the orthogonal
system. Jacobi polynomials are highlighted as a primary focus, defined over the interval (1, 1) with a beta-type
weight function. These polynomials generalize many well-known systems, including Legendre and Chebyshev
polynomials, depending on parameter choices. This theoretical setup is crucial for the later development of
ultraspherical Jacobi polynomial equations and ensures a coherent understanding of the analytical tools used
throughout the article. In this section we recall the definition and the basic properties of orthogonal polynomials
that can be found in the basic literature on orthogonal polynomials (see, fro instance [4, 5]). These classical
orthogonal polynomials satisfy an orthogonality relation, a three term recurrence relation, a second order
linear differential equation and a so-called Rodrigues formula. Moreover, for each family of classical orthogonal
polynomials we have a generating function.
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Definition 2.1. Let {Pn(x)}∞
n=0 be a system of polynomials, where every polynomial Pn(x) has the degree n.

If for all polynomials of this system
∫

a

b
h (x) Pn(x)Pm(x)dx = 0, n ̸= m then the polynomials {Pn(x)}∞

n=0 called
orthogonal in (a, b) with respect to the weight function h(x). If moreover

∥Pn(x)∥h(x) =
(∫ b

a
h(x)P 2

n(x)dx
)2

= 1,

for every n = 0, 1, 2, ..., then the polynomials are called orthonormal in (a, b). So the condition of the
orthonormality of the system {Pn(x)}∞

n=0 has the form
∫ b

a
h (x) Pn (x) Pm (x) dx = δmn, where δmn is Kronecker

delta which is defined by δmn :=
{

0, m ̸= n
1, m = n

for m, n = {0, 1, 2 . . .}. Jacobi polynomials can be defined by means

of their Rodrigues formula and it is stated below

P (α,β)
n (x) = (−1)n

2nn! (1 − x)−α (1 + x)−β
Dn

[
(1 − x)n+α (1 + x)n+β

]
, for n = 0, 1, 2, . . . . (1)

In the sequel we will often use and the notation D = d
dx for diferentiation operator. Then we have Leibniz’ rule.

3|Differential equations for ultraspherical Jacobian polynomials
Section 3 delves into the core objective of the article - deriving and analyzing differential equations that are
satisfied by ultraspherical Jacobi polynomials. The authors begin by considering a special case of Jacobi
polynomials where the parameters are equal, which leads to the definition of ultraspherical polynomials. Using a
weight-based function representation and successive differentiation, they develop a sequence of transformations
that reveal the underlying differential structure of these polynomials. Through step-by-step calculations, the
section carefully traces how these functions behave under differentiation and how their properties lead to the
formation of a second-order linear differential equation. The derivation is conducted analytically using classical
techniques such as Leibniz’s rule and identity transformations. The resulting differential equation, free of
arbitrary constants, reflects the orthogonality and recursive nature of the ultraspherical Jacobi polynomials.
Moreover, the section demonstrates consistency between the constructed equation and the known orthonormal
conditions of these polynomials. It also showcases how various algebraic terms simplify under symmetry and
parameter constraints, emphasizing the elegance and internal harmony of the polynomial system. Ultimately,
this section not only proves that the ultraspherical Jacobi polynomials satisfy a specific differential equation,
but also highlights their potential applicability in solving complex boundary value problems and mathematical
models involving orthogonal function systems.

Generalized Jacobian polynomials, which are one of the classical orthogonal polynomials, and orthonormal
Jacobian polynomials with respect to the weight function have been determined. Fourier series for this polynomial
has been investigated. Now we will look at the problem with some applications of Jacobian polynomials, including
the application of differential equations. In the special case,

Pn (x, α) = (−1)

n

n!2̇n

[
(1 − x)2

]−α dn (1 − x2)α+n

dxn
. (2)

Let’s look at the special differential equations of ultraspheric Jacobian polynomials. Suppose that,

u = (1 − x2)α+n
. (3)

Let us differentiate successively
du
dx = (α + n)(1 − x2)α+n−1 (−2x) = −2 (α + n) (α − x2)α+n−1 = = (1−x2)ff+n

1−x2 [−2 (α + n) x] = −2u
1−x2(α + n) x

Obviously,
du

dx

(
1 − x2)

= −2 (α + n) x.
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Let’s differentiate the 2nd formulation
d2u

dx2

(
1 − x2)

− du

dx
2x = (−2α − 2n)

(
u + x

du

dx

)
, (4)

d2u

dx2

(
1 − x2)

= 2 (1 − a − n) x
du

dx
− 2 (α + n) u. (5)

If we take the differential according to the points successively(
1 − x2) dn+2u

dxn+2 − 2 (n + 1) x
dn+1u

dxn+1 − (n + 1) n
dnu

dxn
= [−2 (α + n) x] dn+1u

dxn+1 − (n + 1) (2α + 2n) dnu

dxn
. (6)

As a result (
1 − x2)

dn+2u
dxn+2 + [(2α − 2) x] dn+1u

dxn+1 + (n + 1) (2α + n) dnu
dxn = 0.

On the other hand, if we use formula (1) and consider expression (2), then

Pn (x; α) = (−1)n

n!2n
(1 − x2)−α d2u

dx2 . (7)

Let us determine the equality of the derivative d2u
dx2 and the identity (5). Then, after certain conditions, the

following is obtained:

(
1 − x2) [(

1 − x2)α
P

′′

n (x; α)
]

+ (2α − 2) x
[(

1 − x2)α
P

′

n (x; α)
]′

+
+ (n + 1) (2α + n)

[(
1 − x2)α

Pn (x; α)
]

= 0.
(8)

The 1st order derivative of the points in the given square bracket is obtained as follows:

−α (1 − x)α−1 (1 + x)α
Pn (x; α) + α (1 − x)α (1 + x)α−1

Pn (x; α) +
(
1 − x2)α

P ‘
n(x; α).

After simplifying:

−α
(1−x2)α

1−x (1 + x)α
Pn (x; α) + α (1 − x)α (1+x)α

1+x Pn (x; α) +
(
1 − x2)α

P ′
n (x; α) ,

or (
1 − x2) [

− α
1−x Pn (x; α) + α

1+x Pn (x; α) + P ′
n (x; α)

] (
1 − x2) [

− 2αx
1−x2 Pn (x; α) + P ′

n (x; α)
]

.

If we use the second order derivative and the last part of equation (7), then(
1 − x2)

[α (α − 1) (1 − x)α−2 (1 + xα) Pn (x; α) − α2 (
1 − x2)α−1

Pn (x; α) − α (1 − x)α−1 (1 + x)α
P ′

n (x; α)
−α2 (

1 − x2)α−1
Pn (x; α) + α (α − 1) (1 − x)α (1 + x)α−2

Pn (x; α) + α (1 − x)α (1 + x)α−1
P ′

n (x; α) −
α (1 − x)α−1 (1 + x)α

P ′
n (x; α) + α (1 − x)α (1 + x)α−1

P ′
n (x; α) +

(
1 − x2)α

P ′′
n (x; α)]+

(2α − 2) x
[
−α (1 − x)α−1 (1 + x)α

Pn (x; α) + α (1 − x)α (1 + x)α−1
Pn (x; α) +

(
1 − x2)α

P
′

n (x; α)
]

+ (n + 1) (2α + n)
[(

1 − x2)α
Pn (x; α)

]
= 0.

Note that the above terms are the product of (1 − x)α and (1 + x)α, and if we use the corresponding terms in
square brackets, then(

1 − x2) [
α(α−1)
(1−x2) Pn (x; α) − 2α2

1−x2 Pn (x; α) − 2α
1−x P ′

n (x; α) + α(α−1)
(1+x)2 Pn (x; α) + 2α

1+x P ′
n (x; α) + P ′′

n (x; α)
]

+

2 (α − 1) x
[

−α
1−x Pn (x; α) + α

1+x Pn (x; α) + P ′
n (x; α)

]
+ (n + 1) (2α + n) Pn (x; α) = 0.

It is clear that multiplying Jacobian polynomials and their derivatives form special limits. As a result

(
1 − x2)

P ′′
n (x; α) + [−2α (1 + x) + 2α (1 − x) + 2αx − 2x] P ′

n (x; α) +
+

[
α(α−1)(1+x)

1−x − 2α2 + α(α−1)
1+x (1 − x) − α 2(α−1)x

1−x + α 2(α−1)x
1+x + (n + 1) (2α + n)

]
Pn (x; α) = 0.

(9)

If we simplify, then
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(
1 − x2)

Pn
′′ (x; α) − 2 (α + 1) xPn

′ (x; α) + [−2α + (n + 1) (2α + n)] Pn(x; α).

As a result (
1 − x2)

Pn
′′ (x; α) + (−2α − 2) Pn

′ (x; α) + n (2α + n + 1) Pn (x; α) = 0.

Since all the following inequalities are identical in condition (5), it is clear that the Jacobi polynomials satisfy
the differential equations: (

1 − x2)
y′′ + [(−2α − 2) x] y′ + n (2α + n + 1) y = 0.

It is clear that this equation is satisfied in the orthonormal P n(x; α) polynomial.

5|Conclusion
In this article, the authors have conducted a comprehensive analytical study on the construction and charac-
terization of differential equations satisfied by ultraspherical Jacobi polynomials. Starting from foundational
principles of orthogonal polynomial theory, the research effectively bridges classical mathematical constructs
with modern analytical techniques. By considering the specific case of ultraspherical polynomials - where
the parameters in the Jacobi polynomial weight function are equal - the authors derive a second-order linear
differential equation that accurately describes the behavior of these polynomials across the interval (1, 1).
Through meticulous differentiation and the use of symbolic identities such as Leibniz’s rule and the Rodrigues
formula, the study presents a clear and rigorous pathway from definition to differential characterization. The
work confirms that ultraspherical Jacobi polynomials not only satisfy standard orthonormality conditions but
also obey a uniquely structured differential equation, which enhances their applicability in both theoretical and
computational domains. The findings have significant implications for applied mathematics, particularly in
solving boundary value problems, spectral analysis, and mathematical physics, where orthogonal polynomials
often serve as basis functions. Moreover, the methods employed can be adapted and extended to other families
of classical orthogonal polynomials, paving the way for broader applications in numerical approximation and
functional analysis. This research reinforces the value of revisiting classical mathematical objects through
modern analytical techniques. It offers a deeper understanding of the structural harmony inherent in orthogonal
polynomial systems and demonstrates how such understanding can lead to new insights into the solutions of
differential equations. Overall, the article contributes both theoretical depth and practical utility to the field of
mathematical analysis.
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