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Abstract

This article presents a new approach to the study of generalized q−Pochhammer symbols through the
Leverrier–Takeno method. By linking the derivatives of these products to the coefficients of characteristic
polynomials, the work provides a systematic framework for constructing Taylor expansions in terms of
combinatorial objects such as Bell polynomials and q−binomial coefficients. The method naturally leads
to several well-known results in q−series, including the q−binomial theorem, Euler’s identity, and the
Jacobi triple product identity. In addition, the approach reveals close connections with partition functions
and recurrence relations, offering new perspectives on classical number theoretic results. The findings
highlight the effectiveness of combining linear algebraic methods with combinatorial techniques to deepen
the understanding of q−series and their applications in mathematics.
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1|Introduction
The theory of q−series plays a central role in modern mathematics, with applications ranging from combinatorics
and number theory to mathematical physics. Among its fundamental objects are q-Pochhammer symbols, which
appear in a variety of identities and expansions, including the celebrated q−binomial theorem and the Jacobi
triple product identity. These identities are not only elegant in their own right but also provide important
connections to partition functions and recurrence relations. In this paper, we propose a novel approach to the
study of q−Pochhammer symbols by employing the Leverrier–Takeno method, a classical technique from matrix
theory. This method enables us to express derivatives and expansions in terms of characteristic polynomials and
Bell polynomials, thereby establishing new links between linear algebra, combinatorics, and q-series. In this
article, we developed a systematic procedure to obtain Taylor expansions of generalized q−Pochhammer symbols
through the Leverrier–Takeno technique. The approach revealed deep connections between the coefficients
of characteristic polynomials, Bell polynomials, and q-binomial coefficients, offering a unified framework for
deriving classical results of q-series. Our analysis confirmed the appearance of well-known identities such as the
q-binomial theorem, Euler’s identity, and the Jacobi triple product identity, while also showing their implications
for partition functions and recurrence relations. The results highlight the effectiveness of matrix methods
in addressing problems of number theory and combinatorics, providing a bridge between different areas of
mathematics.

The present article situates itself within the long tradition of research on q−series and related combinatorial
structures. The foundations of this field go back to the pioneering works of Jacobi [3] , who introduced the
theory of elliptic functions and formulated the famous triple product identity. Later developments have been
systematically presented in modern references such as Chan [1], Johnson [2], and Hirschhorn [4], which emphasize
the deep connections between q−series, partition functions, and combinatorial identities. The q−binomial theorem
and its various consequences remain central to this domain. Landmarks in understanding such expansions have
been explored through matrix analysis [5], [6] and more recently by López-Bonilla and collaborators [7], who
related characteristic polynomials to Bell polynomials. These connections motivate the approach taken in this
article, where the Leverrier–Takeno method is applied to study expansions of q−Pochhammer symbols. The
Leverrier–Takeno technique itself has a long history, starting with the works of Leverrier [8] in celestial mechanics
and later generalized by Takeno [9] for tensors and matrices. Its applications to physical and mathematical
problems were further elaborated by Wilson et al. [10] and by Guerrero-Moreno and colleagues [12]. More recent
contributions highlight refinements and alternative formulations, as in Bulnes, Islam, and López-Bonilla [11]. An
essential tool in our analysis is the use of complete Bell polynomials, which appear in classical combinatorial
texts such as Riordan [16] and Comtet [17], and in more modern treatments like Connon [18]. Several articles by
López-Bonilla and coauthors [19]-[22] have deepened the applications of these polynomials to problems in algebra
and analysis. Their link to Newton’s recurrence relations [23], as well as to triangular matrix inversion [25],
provides a structural basis for the method employed here. Parallel developments in linear algebra and matrix
theory also contribute to the methodology. Csanky [24] proposed efficient algorithms for matrix inversion, while
Wang, Wei, and Qiao [26] studied generalized inverses. Classical Russian contributions, such as those of Faddeev
and Sominsky [27], [29] laid the groundwork for algorithmic approaches, later refined by Gower [30] and Helmberg
and collaborators [31]. These studies confirm the robustness of the Leverrier–Faddeev type algorithms, as also
emphasized by Hou [32], [33] and by López-Bonilla and his collaborators in applications to spacetime models [34].
From the perspective of number theory, the article engages with results concerning partition functions. Malenfant
[40] derived finite expressions for partition numbers, later revisited by López-Bonilla and Vidal-Beltrán [41], and
by Bulnes and coauthors [42]. Hirschhorn [44] and Berkovich and Uncu [43] further explored congruences and
polynomial identities that echo the results obtained here. The relevance of partition identities to combinatorics
and recurrence sequences was also emphasized by Birmajer et al. [46]. The determinant formulations of Vein
and Dale [47], together with Gould’s combinatorial identities [48], provide a further algebraic background to
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the type of expansions analyzed in this paper. These references underscore the long-standing interplay between
determinants, polynomial identities, and q−series. In summary, this article builds on the foundational works
of Jacobi [3] and Ramanujan-inspired studies, while drawing on modern expositions of q-series [1], [2], [4]. It
combines the algebraic insights of Leverrier–Takeno methods [8], [9], [11], [12] with the combinatorial depth of
Bell polynomials [16]-[21]. By linking these techniques to partition theory [40]-[42], the paper contributes to a
deeper understanding of q−Pochhammer expansions and their applications.

Here we study the q−Pochhammer symbol:

A := (−z g(q); f(q))n = (1 + zg)(1 + zgf)(1 + zgf2) ... (1 + zgfn−1), (1)

which is a polynomial in z of degree n, and its Taylor expansion is given by:

A =
n∑

k=0

[
dkA

dzk

]
z=0

zk

k! , (2)

where usually g(q) and f(q) are powers of q. We shall have special interest in the case g = −1, f = q because
(z; q)n appears in the important q−binomial theorem [1, 2], that is, our approach gives an alternative motivation
/ deduction of this theorem. Besides, it is attractive the case g = q, f = q2 because (−zq; q2)∞ participates in
the valuable Jacobi triple product identity [1, 2, 3, 4].

In Sec. 3 we find that the dkA/dzk are related with the coefficients of the characteristic polynomial p(λ) [5, 6, 7]
of the following diagonal matrix:

Bn×n = Diag
( 1

1 + zg
,

f

1 + zgf
,

f2

1 + zgf2 , ... ,
fn−1

1 + zgfn−1

)
(3)

and the traces of its powers are given by:

sm = tr Bm =
n∑

j=1

fm(j−1)(
1 + zgf j−1

)m , (4)

which are employed by the Leverrier-Takeno method [8, 9, 10, 11, 12] to construct p(λ) for B:

p(λ) = λn + a1λn−1 + ... + an−1λ + an , (5)

where the quantities ar are in terms of the traces sj ; then in Sec. 2 we indicate the principal expressions of this
method. Finally, in Sec. 3 we obtain the result:

dkA

dzk
= (−g)k k! A ak, 0 ≤ k ≤ n, (6)

thus (2) implies the relation:

(−zg; f)n =
n∑

k=0
[ak]z=0 (−gz)k, (7)

because [A]z=0 = 1, and we find that:

[ak]z=0 = (−1)k f (k(k−1))/2 Π
k

j=1

1 − fn−j+1

1 − f j
= (−1)k f (k(k−1))/2

(
n

k

)
f

, (8)

such that
(

n
k

)
f

is a q−binomial coefficient (Gaussian polynomial) [1, 2]. Hence from (7) and (8):

(−zg; f)n =
n∑

k=0

(
n

k

)
f

f (k(k−1))/2 (gz)k, (9)

and in Sec. 4 we make applications of this expression, for example, from it are immediate the Euler identity [4]
and a q−series connected with the partition function [2].
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2|Leverrier-Takeno Technique
For any matrix Bn×n, in the approach of Leverrier-Takeno [8, 9, 10, 11, 12] the ai are determined with the
Newton’s recurrence relation:

r ar + s1 ar−1 + s2 ar−2 + ... + sr−1 a1 + sr = 0, r = 1, 2, ... , n, a0 = 1, (10)
therefore:

a1 = −s1, 2! a2 = (s1)2 − s2, 3! a3 = −(s1)3 + 3s1s2 − 2s3,

4! a4 = (s1)4 − 6(s1)2s2 + 8s1s3 + 3(s2)2 − 6s4, (11)
5! a5 = −24s5 − (s1)5 + 10(s1)3s2 − 20(s1)2s3 − 15(s2)2s1 + 30s1s4 + 20s2s3, etc.,

in particular, detB = (−1)nan, that is, the determinant of any matrix only depends on the traces sr, which
means that B and its transpose have the same determinant. In [13, 14, 15] we find the general expression:

ak = (−1)k

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 k − 1 0 ... 0
s2 s1 k − 2 ... 0
. . . ... .
. . . ... .
. . . ... .

sk−1 sk−2 ... ... 1
sk sk−1 ... ... s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k = 1, ... , n, (12)

which allows reproduce the values (11).

Besides, we can exhibit a relation to determine the coefficients aj via the complete Bell polynomials [7, 16, 17,
18, 19, 20, 21, 22], in fact, we know the following representation [7]:

m! am = Bm

(
− 0! s1, −1! s2, −2! s3, −3! s4, ... , −(m − 2)! sm−1, −(m − 1)! sm

)
. (13)

such that [7, 23]:

Bm(x1, x2, ... , xm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m−1

0
)
x1

(
m−1

1
)
x2 ...

(
m−1
m−2

)
xm−1

(
m−1
m−1

)
xm

−1
(

m−2
0

)
x1 ...

(
m−2
m−3

)
xm−2

(
m−2
m−2

)
xm−1

0 −1 ...
(

m−3
m−4

)
xm−3

(
m−3
m−3

)
xm−2

. . . ... .

. . . ... .

. . . ... .

0 0 ...
(1

0
)
x1

(1
1
)
x2

0 0 ... −1
(0

0
)
x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (14)

therefore:
B0 = 1, B1 = x1, B2 = x2

1 + x2, B3 = x3
1 + 3x1x2 + x3, B4 = x4

1 + 6x2
1x2 + 4x1x3 + 3x2

2 + x4, (15)

B5 = x5
1 + 10 x3

1x2 + 10 x2
1x3 + 15 x1x2

2 + 5 x1x4 + 10 x2x3 + x5, ...

We see that (13) and (15) imply (11) if we employ x1 = −s1, x2 = −s2, x3 = −2s3, x4 = −6s4, x5 = −24s5, ... ;
thus the coefficients of the characteristic polynomial (5) are generated by the complete Bell polynomials.

In the Newton’s formula (10) the quantities sr are known, and the aj are solutions of the triangular linear
system [24, 25, 26]:

Cn×n · (aj)n×1 =



1 0 0 ... ... 0
s1 2 0 ... ... 0
s2 s1 3 ... ... .
. . s1 ... ... .
. . . ... ... .
. . . ... ... 0

sn−1 sn−2 sn−3 ... s1 n





a1
a2
a3
.
.
.

an


= −



s1
s2
s3
.
.
.

sn


, (16)
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then: 
a1
.
.
.

an

 = −C−1


s1
.
.
.

sn

 , (17)

which gives the opportunity to invert a triangular matrix via interesting algorithms applying the
Faddeev−Sominsky method [11, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], matrix multiplication [37, 38] or
binomial series [39].

3|Calculation of dk

dzk (−zg; f )n

Here we calculate the derivatives of the product (1). From (4) it is useful to observe that:
d

dz
sm = −mg sm+1; (18)

then:
dA

dz
= gA

n∑
j=1

f j−1

1 + zgf j−1 = gA trB = gAs1 = −a1,
d2A

dz2 = g2A(s2
1 − s2) = 2! g2A a2,

d3A

dz3 = g3A(s3
1 − 3s1s2 + 2s3) = −3! g3A a3, (19)

d4A

dz4 = g4A(s4
1 − 6s2

1s2 + 3s2
2 + 8s1s3 − 6s4) = 4! g4 A a4, ... ,

which is the result (6), that is, the derivatives of (1) are determined by the coefficients of the characteristic
polynomial of the matrix (3). From (4):

[sm]z=0 = 1 − fmn

1 − fm
, (20)

whose application in (11) gives the expressions:

[a1]z=0 = −1 − fn

1 − f
,

[a2]z=0 = f
(1 − fn)(1 − fn−1)

(1 − f)(1 − f2) , [a3]z=0 = −f3 (1 − fn)(1 − fn−1)(1 − fn−2)
(1 − f)(1 − f2)(1 − f3) , (21)

[a4]z=0 = f6 (1 − fn)(1 − fn−1)(1 − fn−2)(1 − fn−3)
(1 − f)(1 − f2)(1 − f3)(1 − f4) , ...

in harmony with the relation (8); then (9) is immediate from (7) and (8).

4|Applications of (9)
a). f = q, g = −1, in this case the relation (9) implies the q−binomial theorem [1, 2]:

(z; q)n =
n∑

k=0

(
n

k

)
q

q(k(k−1))/2 (−z)k. (22)

b). From (9) if limt→∞ f t = 0:

(−zg; f)∞ =
∞∑

k=0

fk(k−1)/2

(f ; f)k
(gz)k, (23)

because we know that [2]:

lim
n→∞

(
n

k

)
f

= 1
(f ; f)k

. (24)
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For the case g = q with f = q2, the result (23) generates the expansion:

(−zg; q2)∞ =
∞∑

k=0

qk2

(q2; q2)k
zk, (25)

which is important by its presence in the Jacobi triple product identity [1, 2, 3, 4]:
∞∑

n=−∞
qn2

zn = (q2; q2)∞(−zq; q2)∞(−q

z
; q2)∞, (26)

this relation is one of the fundamental identities in q−series. In (26) we can use (25) to obtain the property:
∞∑

n=0
p(n)qn = 1

(q; q)∞
=

∞∑
n=0

qn(n+m)

(q; q)n(q; q)n+m
, m = 0, 1, 2, 3, ... (27)

where p(n) is the partition function [2, 40, 41, 42].

If g = 1 with f = q, then (23) implies the Euler identity [4, 43]:

(−z; q)∞ =
∞∑

k=0

qk(k−1)/2

(q; q)k
zk, (28)

which for z = −q gives the inverse of (27) [2, 41]:
∞∑

n=0
bnqn = (q; q)∞ =

∞∑
k=0

(−1)kqk(k+1)/2

(q; q)k
, (29)

where:

bj =

 0, if j ̸= N
2 (3N + 1),

N = 0, ±1, ±2, ...
(−1)N , if j = N

2 (3N + 1)
(30)

From (27) and (29) [44, 45]:
∞∑

n=0
p(n)tn = 1∑∞

r=0 brtr
, p(0) = b0 = 1, (31)

with the recurrence relation [46]:
n∑

k=0
bk p(n − k) = 0, (32)

discovered by MacMahon [45]. On the other hand, from [47, 48] we have that relations of type (31) are equivalent
to the following Hessenberg determinant:

p(n) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 b0 0 0 ... 0
b2 b1 b0 0 ... 0
b3 b2 b1 b0 ... 0
. . . . ... .
. . . . ... .
. . . . ... b0
bn bn−1 bn−2 ... ... b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (33)

obtained by Malenfant [40, 41].

Remark 1.- We know the q−binomial series [1]:

1
(z; q)n

=
∞∑

k=0

(
n + k − 1

k

)
q

zk, (34)

where we can use (22) to deduce the interesting identity:
k∑

j=0
(−1)j

(
n + k − j − 1

k − j

)
q

(
n

j

)
q

qj(j−1)/2 = 0, n ≥ 0, k ≥ 1, (35)
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and it gives the following expression if n → ∞:

k∑
j=0

(−1)j

(
k

j

)
q

qj(j−1)/2 = 0, k ≥ 1, (36)

which is immediate from q−binomial theorem for z = 1. Besides, from (27) and (34):

1
(q; q)∞

=
∞∑

n=0
p(n)qn =

∞∑
k=0

qk

(q; q)k
. (37)

We consider that the Leverrier-Takeno method and the Chebyshev polynomials [45] are useful tools to study
q−Pochhammer symbols.

7|Conclusion
In this work, we developed a comprehensive study of generalized q−Pochhammer symbols using the Lever-
rier–Takeno method. By establishing a connection between derivatives of these products and the coefficients
of characteristic polynomials, we demonstrated how matrix techniques can be effectively applied to problems
in combinatorics and number theory. The framework allowed us to employ complete Bell polynomials and
Newton-type recursions to systematically derive expansions, thereby unifying algebraic and combinatorial
approaches. Our analysis revealed that classical results in q−series, such as the q−binomial theorem, Euler’s
identity, and the Jacobi triple product identity, naturally emerge from this methodology. Furthermore, the study
showed how these expansions are directly linked to partition functions and their recurrence relations, providing
deeper insight into the structural properties of integer partitions. The recurrence schemes and determinant
formulations that appear highlight the versatility of the approach and its potential applications beyond the
examples considered here. The significance of these results lies not only in re-deriving known identities through
an alternative path but also in demonstrating the usefulness of linear algebraic methods in fields traditionally
dominated by analytic or combinatorial techniques. This interdisciplinary perspective underscores the potential
for further research at the intersection of matrix theory, combinatorics, and analytic number theory. Future work
may include the extension of this method to other special functions within q−analysis, exploring connections
with generalized binomial coefficients, or investigating identities related to modular forms. Additionally, the
approach may find applications in mathematical physics, particularly in problems where partition functions
and generating functions play a central role. In conclusion, the article provides a new algebraic viewpoint for
the study of q−Pochhammer symbols and related q−series identities. It opens avenues for both theoretical
exploration and practical applications, reinforcing the deep unity between linear algebra, combinatorics, and
number theory.
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