Statistical Modeling of Multivariate Reliability Function Using Copula Method in the Presence of Censoring
DOI:
https://doi.org/10.22105/kmisj.v1i1.43Keywords:
Statistical modeling, censoringر, copula method, reliability function, dependent variablesAbstract
Numerous scientific and practical researches conducted around the world are
mostly focused use on the methods of statistical modeling. Statistical models play an important role in various fields. Examples include mathematical models in the physics, astronomy, biology, medicine, economics, demography, sociology, psychology, marketing, political science, engineering sciences, machine learning, computer science, natural sciences and other related fields. In this article, we investigate the problem of statistical modeling of multivariate reliability functions. In this case, an algorithm for constructing a statistical model is developed and the copula method is used in the presence of censoring.
References
T. R. Fleming, D. R. Harrington, Counting processes and survival analysis. New York: Wiley, 1991.
R. B. Nelsen, An introduction to copulas. New York: Springer, 2006.
A. A. Abdushukurov, Estimates of unknown distributions from incomplete observations and their properties. Germany: LAP, 2011.
A. A. Abdushukurov, Nonparametric estimation of the distribution function based on relative risk function. Commun. Statist.: Theory & Methods. 27, (1998), 1991–2012.
A. A. Abdushukurov, On nonparametric estimation of reliability indices by censored samples. Theory. Probab. Appl. 43, (1999), 3–11.
A. A. Abdushukurov, Nonparametrical estimators of survival function on the plane by censored observations. Uzbek mathematical journal, 2, (2004), 3–11.
A. A. Abdushukurov, R. S. Muradov, Estimation of two-dimensional survival function by random right censored data. Proceedings of XI th International Conference "Computer Data Analysis & Modeling", (2016), 81–86.
A. A. Abdushukurov, Estimation of joint survival function from censored observations. Zavod. Lab. Diagn. Mater., 82, (2016), 80–84.
A. A. Abdushukurov, R. S. Muradov, On the estimates of the distribution function in a random censorship model. Zavod. Lab. Diagn. Mater. 80, (2014), 62–67.
A. A. Abdushukurov, R. S. Muradov, On Estimation of Conditional Distribution Function under Dependent Random Right Censored Data. Journal of Siberian Federal University. Mathematics & Physics 7, (2014), 409–416.
A. A. Abdushukurov, R. S. Muradov, Estimation of survival functions from dependent random right censored data. Intern. J. Innovation in Science and Mathematics, 2, (2014), 280–287.
A. A. Abdushukurov, N. Nurmuhamedova, S. Bozorov, Nonparametric Estimation of Distribution Function Under Right Random Censoring Based on Presmoothed Relative-Risk Function. Lobachevskii Journal of Mathematics, 42(2), (2021), 257–268.
A. A. Abdushukurov, R. S. Muradov, Some algebraic properties of Archimedean copula functions and their applications in the statistical estimation of the survival function. New Trends in Math. Sci., 4, (2014), 88–98.
A. A. Abdushukurov, R. S. Muradov, Estimation of bivariate survival function from random censored data with Poisson sample size. Calcutta Statistical Association Bulletin, 72(2), (2020), 111–122.
A. A. Abdushukurov, Estimation of conditional survival function under dependent right random censored data. Austrian J. of Statist., 49, (2020), 1–8.
A. A. Abdushukurov, R. S. Muradov, On Estimation of Bivariate Survival Function from Random Censored Data. Journal of Siberian Federal University. Mathematics & Physics, 13(4), (2020), 422–430.
R. Braekers, N. Veraverbeke, A copula graphic estimator for the conditional survival function under dependent censoring. Canadian J. Statist., 33(3), (2005), 429–447.
M. D. Burke, Estimation of a bivariate distribution function under random censorship. Biometrika, 75, (1988), 379–382.
G. Campbell, Nonparametric bivariate estimation with randomly censored data. Biometrika, 68, (1981), 417–422.
G. Campbell, A. Földes, Lange sample properties of nonparametric bivariate estimators with censored data. Colloquia Mathematica-Societatis János Bolyai, 32, (1982), 103–122.
D. M. Dabrowska, Kaplan Meier estimate on the plane. Ann. Statist., 16, (1988), 1475–1489.
D. M. Dabrowska, Kaplan Meier estimate on the plane: weak convergence, LIL and the bootstrap. J. Multivar. Anal., 29, (1989), 308–325.
R. D. Gill, Multivariate Survival Analysis I. Theory Probab. Appl., 37, (1992), 19–35.
R. D. Gill, Multivariate Survival Analysis II. Theory Probab. Appl., 37, (1992), 307–328.
J. A. Hanley, M. N. Parnes, Nonparametric estimation of a multivariate distribution in the presence of censoring. Biometrika, 68, (1983), 129–139.
L. Horváth, The rate of strong uniform consistency for the multivariate product-limit estimator. Colloquia Mathematica-Societatis János Bolyai, 13, (1983), 202–209.
Y. Huang, Two sample multistate accelerated sojourn times model. J. A.S.A., 95, (2000), 619–627.
W. Y. Tsai, S. Leurgans, J. Crowley, Nonparametric estimation of a bivariate survival function in the presence of censoring. Ann. Statist., 14, (1986), 1351–1365.
M. Zeng, J. P. Klein, Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika, 82, (1995), 122–128.
A. A. Abdushukurov, R. S. Muradov, Estimation of conditional jointly survival function under dependent right random censored data. Lobachevskii Journal of Mathematics, 72(4), (2022), 2111-2122.
A. A. Abdushukurov, N. T. Dushatov, R. S. Muradov, Estimation of Functionals of Multivariate Distribution by Censored Observation via Copula Function. Journal of Mathematical Sciences, 267(1), (2022), 108–116.
A. A. Abdushukurov, N. T. Dushatov, R. S. Muradov, Nonparametric estimators of bivariate distributions from incomplete samples and their applications. Journal of Mathematical Sciences, 267(1), (2022), 16–22.
F. Durante, C. Sempi, Principles of copula theory. Taylor & Francis Group, LLC, New York, (2016).
A. Sklar, Random variables, joint distribution functions and copulas. Kybernetika, Prague, 9, (1973), 449-460.