Bondage Number for Jump Graph of Some Trees.

Authors

  • B. Atay

DOI:

https://doi.org/10.22105/kmisj.v1i1.44

Keywords:

Domination number, bondage number, jump graph

Abstract

The dominating set of a graph is a vertex set in that every vertex which is not in the dominating set is adjacent to at least one vertex of the dominating set. The domination number is the minimal cardinality among all dominating sets. The bondage number of any graph is the minimal cardinality among all sets of edges whose removal from the graph results in a graph with domination number greater than the domination number of the preliminary graph. In this paper, we investigate the bondage number for jump graph of some certain trees.

References

A. Aytaç and T. Turacı, On the bondage, strong and weak bondage numbers in complementary prism graphs, Computer Science Journal of Moldova, 29:1(85), 59–75 (2021).

A. Aytaç, T. Turacı and Z. N. Odabaş, On the bondage number of middle graphs, Mathematical Notes, 93:6, 795–801 (2013).

D. Bauer, F. Harary, J. Nieminen and C. L. Suffel, Domination alteration sets in graph, Discrete Math, 47:2-3, 153–161 (1983).

D. F. Hartnell and D. F. Rall, Bounds on the bondage number of a graph, Discrete Math, 128:1-3, 173–177 (1994).

F. Harary, Graph Theory, Addition-Wesley Publishing Co., Reading, MA/Menlo Park, CA/London, (1969).

G. Chartrand, H. Hevia, E. B. Jarrett and M. Schultz, Subgraph distances in graphs defined by edge transfers, Discrete Math., 170, 63–79 (1997).

J. A. Gallian, A dynamic survey of graph labelling, Elect. Jour. Combin., 15, DS6. (2008).

J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math, 86:1-3, 47–57 (1990).

M. Symen, M. Plipczuk and R. Skrekovski, Relation between Randic index and average distance of trees, Institute of Mathematics, Physics and Mechanics Jadranska, 48, Slovenia, 1130 (2010).

P. Dankelmann, D. Day, D. Erwin, S. Mukwembi and H. Swart, Domination with exponential decay, Discrete Mathematics, 309, 5877–5883 (2009).

R. Frucht and F. Harary, On the corona two graphs, Aequationes Math., 4, 322–325 (1970).

T. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press (Fourth edition), (1990).

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Markel Dekker, Inc., New York.

Y. B. Maralabhavi, S. B. Anupama and M. Goudar Venkanagouda, Domination number of jump graph, International Mathematical Forum, 8:16, 753–758 (2013).

W.-C. Chen, H.-I. Lu and Y.-N. Yeh, Operations of Interlaced Trees and Graceful Trees,Southeast AsianBull. Math.21, 337–348 (1997).

Published

2024-06-29

Issue

Section

Articles

How to Cite

B. Atay. (2024). Bondage Number for Jump Graph of Some Trees. Karshi Multidisciplinary International Scientific Journal, 1(1), 57-64. https://doi.org/10.22105/kmisj.v1i1.44