A Theoretical Study on Axiomatizability of First-Order Mathematical Structures

Authors

  • Saeed Salehi Department of Mathematics, University of Tabriz,Bahman 29th Boulevard,51666-16471, Tabriz, Iran.
  • Zahra Sheikhaleslami Department of Mathematics, University of Tabriz, Bahman 29th Boulevard, 51666-16471, Tabriz, Iran.

DOI:

https://doi.org/10.22105/kmisj.v2i1.82

Keywords:

Axiomatizability, Boolean algebras, Decidability, Incompleteness, Number structure, First-order logic

Abstract

Decidability and undecidability are central challenges in mathematical logic, particularly in the axioma-tization of first-order structures. This study investigated the axiomatizability of various mathematical structures, emphasizing the roles of completeness, consistency, and compactness. We provide an explicit axiomatization for ⟨Z; |⟩, where u | v indicates that u divides v (i.e., ∃t (u · t = v)), demonstrating its decidability through quantifier elimination. This work extends these findings to ⟨Q; |⟩ and explores the multiplicative theory of integers, ⟨Z; ×⟩, highlighting computable axiomatizations in decidable theories.

References

Boolos, G.S., Burgess, John P. and Jeffrey, Richard C. (2007). Computability and Logic, Cambridge University Press. 5th ed., ISBN: 9780521701464.

Burris, S.N., & Sankappanavar, H.P. (1981). Course in Universal Algebra. Springer-Verlag, ISBN 3-540-90578-2.

Poizat, B. (2000). A Course in Model Theory, Springer.

Cégielski, P. (1989). The elementary theory of the natural lattice is finitely axiomatizable. Notre Dame Journal of Formal

Logic, 30(1), 138–150. https://doi.org/10.1305/ndjfl/1093635001.

Ortiz, C.T. (2018). Complete Theories of Boolean Algebras. Departament de Matemàtiques Informàtica, June 27.

Leary, Ch.C. & Kristiansen, L. (2019). A Friendly Introduction to Mathematical Logic, Milne Library.

Prawitz D., & Westerståhl, D. (1994). Logic and Philosophy of Science in Uppsala, Springer Science and Business Media, Tir 8, 1392 AP-Philosophy.

Dutilh, N.C. (2012). Formal Languages in Logic, ISBN: 9781107020917.

Enderton, H.B. (2001). A Mathematical Introduction to Logic, Academic Press (2nd ed.), ISBN: 9780122384523.

Givant S. & Halmos, P. (2009). Introduction to Boolean Algebras, Undergraduate Texts in Mathematics. Springer.

Salehi, S. (2018). On axiomatizability of the multiplicative theory of numbers, Fundamenta Informaticae, 159(3), 279–296.

Salehi, S. (2012). Axiomatizing Mathematical Theories :Multiplication, in:A.Kamali-Nejad (ed). Proceedings of Frontiers in Mathematical Sciences, Sharif University of Technology. Tehran, Iran, (2012) 165–176.

Smorynski, C. (1991). Logical Number Theory I. Springer-Verlag.

Habič, M.E., Hamkins, J.D., Klausner, L.D., Verner, J. & Williams, K.J. (2019). Set-theoretic blockchains, Archive for Mathematical Logic.

Downloads

Published

2025-02-15

Issue

Section

Articles

How to Cite

Salehi, S., & Sheikhaleslami, Z. (2025). A Theoretical Study on Axiomatizability of First-Order Mathematical Structures. Karshi Multidisciplinary International Scientific Journal, 2(1), 17-27. https://doi.org/10.22105/kmisj.v2i1.82

Similar Articles

You may also start an advanced similarity search for this article.