Polypyrrole-Based Materials for 6G Networks: Applications and Sustainability Across Emerging Fields
DOI:
https://doi.org/10.22105/kmisj.v2i2.77Keywords:
Polypyrrole, 6G technology, Sustainable, Advanced materialsAbstract
Polypyrrole (PPy) is a conductive polymer that has gained significant attention for its potential in advanced materials for 6G networks. This study explores how (PPy)--based materials contribute to the development of 6G technologies, focusing on their uses, advantages, and sustainability. Due to their flexibility, conductivity, and environmental stability, these composites have a lot of potential for use in 6G networks, especially in applications like energy storage, flexible antennas, Electromagnetic Interference (EMI) shielding, and Internet of Things (IoT) sensors. The material's energy efficiency, recyclability, and tunability make it an essential part of sustainable 6G infrastructure. This study also investigates how PPy synthesis affects the environment and how it might reduce e-waste and support environmentally friendly communication networks. The potential of PPy in next-generation communication systems by emphasizing improvements in material performance and sustainability is also highlighted.
References
Nakamura, T. (2020). 5G Evolution and 6G. In 2020 IEEE symposium on VLSI technology (pp. 1-5). IEEE. https://doi.org/10.1109/VLSITechnology18217.2020.9265094
Ji, B., Han, Y., Liu, S., Tao, F., Zhang, G., Fu, Z., & Li, C. (2021). Several key technologies for 6G: Challenges and opportunities. IEEE communications standards magazine, 5(2), 44–51. https://doi.org/10.1109/MCOMSTD.001.2000038
Shafie, A., Yang, N., Han, C., Jornet, J. M., Juntti, M., & Kürner, T. (2022). Terahertz communications for 6G and beyond wireless networks: Challenges, key advancements, and opportunities. IEEE network, 37(3), 162–169. https://doi.org/10.1109/MNET.118.2200057
Wang, Y., Zhao, W., Tan, L., Li, Y., Qin, L., & Li, S. (2023). Review of polymer-based composites for electromagnetic shielding application. Molecules, 28(15), 5628. https://doi.org/10.3390/molecules28155628
Parit, M., Du, H., Zhang, X., Prather, C., Adams, M., & Jiang, Z. (2020). Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydrate polymers, 240, 116304. https://doi.org/10.1016/j.carbpol.2020.116304
Pfluger, P., Krounbi, M., Street, G. B., & Weiser, G. (1983). The chemical and physical properties of pyrrole-based conducting polymers: The oxidation of neutral polypyrrole. The journal of chemical physics, 78(6), 3212–3218. https://doi.org/10.1063/1.445237
Abdeltwab, E., Atta, A., Al-Yousef, H. A., & Abdelhamied, M. M. (2024). Characterization, dielectric analysis and thermal properties of novel flexible polymer composite films. ECS journal of solid state science and technology, 13(6), 63004. https://iopscience.iop.org/article/10.1149/2162-8777/ad4fc0/meta
Wei, H., Li, A., Kong, D., Li, Z., Cui, D., Li, T., … Guo, Z. (2021). Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Advanced composites and hybrid materials, 4(1), 86–95. https://doi.org/10.1007/s42114-020-00201-0%0A%0A
Ling, Y., Cao, T., Liu, L., Xu, J., Zheng, J., Li, J., & Zhang, M. (2020). Fabrication of noble metal nanoparticles decorated on one dimensional hierarchical polypyrrole@ MoS 2 microtubes. Journal of materials chemistry b, 8(34), 7801–7811. https://doi.org/10.1039/D0TB01387K
Ehteshami, N., Sathi, V., & Ehteshami, M. (2012). Experimental investigation of a circularly polarised flexible polymer/composite microstrip antenna for wearable applications. IET microwaves, antennas & propagation, 6(15), 1681–1686. https://doi.org/10.1049/iet-map.2012.0395
Chen, S. J., Fumeaux, C., Talemi, P., Chivers, B., & Shepherd, R. (2016). Progress in conductive polymer antennas based on free-standing polypyrrole and PEDOT: PSS. In 2016 17th international symposium on antenna technology and applied electromagnetics (ANTEM) (pp. 1-4). IEEE. https://doi.org/10.1109/ANTEM.2016.7550191
Paik, H., & Premchand, K. (2024). A dual-band FSS-based electromagnetic shield for 5G and 6G applications. International journal of electronics letters, 12(4), 317–329. https://doi.org/10.1080/21681724.2023.2267208
Wang, Y., Gu, F., Ni, L., Liang, K., Marcus, K., Liu, S., … Feng, Z. (2017). Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale, 9(46), 18318–18325. https://doi.org/10.1039/C7NR05951E
Yang, S., Yang, R., Lin, Z., Wang, X., Liu, S., Huang, W., … & Gui, X. (2022). Ultrathin, flexible, and high-strength polypyrrole/Ti 3 C 2 T x film for wide-band gigahertz and terahertz electromagnetic interference shielding. Journal of materials chemistry a, 10(44), 23570–23579. https://doi.org/10.1039/D2TA06805B
Darwish, K. A., Hemeda, O. M., Abdel Ati, M. I., Abd El-Hameed, A. S., Zhou, D., Darwish, M. A., & Salem, M. M. (2023). Synthesis, characterization, and electromagnetic properties of polypyrrole--barium hexaferrite composites for EMI shielding applications. Applied physics a, 129(6), 460. https://doi.org/10.1007/s00339-023-06738-3%0A%0A
Abi Hassan, A., Tutuncu, K., Abdullahi, H. O., & Ali, A. F. (2023). IoT-based smart health monitoring system: Investigating the role of temperature, blood pressure and sleep data in chronic disease management. Journal homepage: http://iieta. org/journals/i2m, 22(6), 231–240. https://doi.org/10.18280/i2m.220602
Mohammadzadeh, Z., Saeidnia, H. R., Lotfata, A., Hassanzadeh, M., & Ghiasi, N. (2023). Smart city healthcare delivery innovations: a systematic review of essential technologies and indicators for developing nations. BMC health services research, 23(1), 1180. https://doi.org/10.1186/s12913-023-10200-8%0A%0A
Kumar, R., Raizada, P., Ahamad, T., Alshehri, S. M., Van Le, Q., Alomar, T. S., … & Singh. (2022). Polypyrrole-based nanomaterials: a novel strategy for reducing toxic chemicals and others related to environmental sustainability applications. Chemosphere, 303, 134993. https://doi.org/10.1016/j.chemosphere.2022.134993
Abu-Sari, S. M., Patah, M. F. A., Ang, B. C., & Daud, W. M. A. W. (2022). A review of polymerization fundamentals, modification method, and challenges of using PPy-based photocatalyst on perspective application. Journal of environmental chemical engineering, 10(6), 108725. https://doi.org/10.1016/j.jece.2022.108725
Huang, H. Y., Tu, Y. H., Yang, Y. H., Lu, Y. T., & Hu, C. C. (2023). Dopant-designed conducting polymers for constructing a high-performance, electrochemical deionization system achieving low energy consumption and long cycle life. Chemical engineering journal, 457, 141373. https://doi.org/10.1016/j.cej.2023.141373
Gorgojo, A. F. (2022). Recovery and re-use of carbon fibres from recycled end-of-life epoxy based composites. Universidad Carlos III De Madrid. https://earchivo.uc3m.es/rest/api/core/bitstreams/785a01b9-254b-4c38-bb4c-c15526833761/content